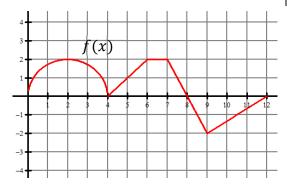

6.6 Properties of Definite Integrals

Write your questions and thoughts here!

1.
$$\int_0^{12} f(x) dx =$$


2.
$$\int_{12}^{0} f(x) dx =$$

Properties of Definite Integrals

Equivalent Limits	Reversal of Limits		
$\int_{a}^{a} f(x) dx =$	$\int_{b}^{a} f(x) dx =$		

Multiply by constant $(k = \text{constant})$	Adjacent Intervals $(a < c < b)$	
$\int_{a}^{b} kf(x) dx =$	$\int_{-\infty}^{c} f(x) dx + \int_{-\infty}^{b} f(x) dx =$	

Addition	Subtraction
$\int_{a}^{b} [f(x) + g(x)] dx =$	$\int_{a}^{b} [f(x) - g(x)] dx =$

3.
$$\int_{7}^{6} f(x) dx =$$

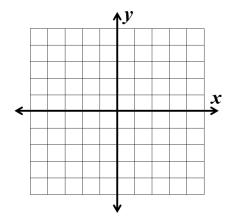
$$4. \quad \int_{12}^{8} 3f(x) \, dx =$$

5. Given that $\int_{-2}^{1} f(x) dx = 4$, $\int_{1}^{5} f(x) dx = -3$, and $\int_{-2}^{1} g(x) dx = 8$, find the following. a. $\int_{5}^{1} f(x) dx$ | b. $\int_{-2}^{5} f(x) dx$ | c. $\int_{-2}^{1} [f(x) + 2g(x)] dx$

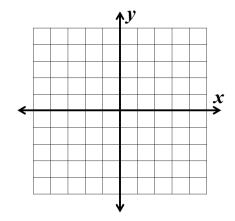
a.
$$\int_5^1 f(x) \, dx$$

b.
$$\int_{-2}^{5} f(x) \, dx$$

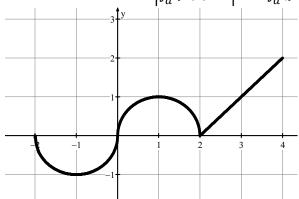
c.
$$\int_{-2}^{1} [f(x) + 2g(x)] dx$$


d.
$$\int_0^1 f(x) \, dx$$

e.
$$\int_{1}^{-2} 3f(x) dx$$

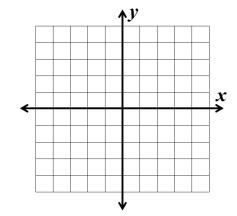

f.
$$\int_{5}^{5} [f(x) - g(x)] dx$$

Piecewise-functions and integrals

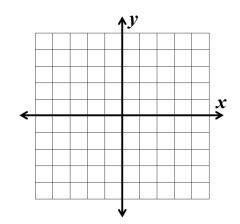

6. The function
$$g$$
 is defined by
$$g(x) = \begin{cases} 3 & \text{for } x < 2\\ 4 - x & \text{for } x \ge 2 \end{cases}$$
What is the value of $\int_{1}^{5} g(x) dx$?

7. What is the value of $\int_0^5 |x-2| dx$?

What is the difference between $\left| \int_a^b f(x) \, dx \right|$ and $\int_a^b |f(x)| \, dx$?

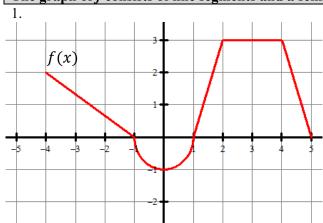

$$8. \left| \int_{-2}^4 f(x) \, dx \right| =$$

9.
$$\int_{-2}^{4} |f(x)| dx =$$


Using a calculator to find an integral value

Sketch a graph of the definite integral. Use the calculator to evaluate.

$$10. \quad \int_2^3 \sqrt{x-1} \, dx$$



11.
$$\int_{-2}^{4} \left(\frac{x}{3} - 1\right) dx$$

6.6 Properties of Definite Integrals

The graph of f consists of line segments and a semicircle. Evaluate each definite integral.

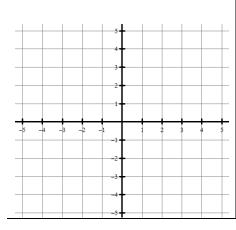
a.
$$\int_{-4}^{-1} f(x) dx =$$

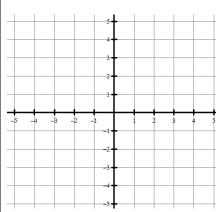
d.
$$\int_{-4}^{5} f(x) dx =$$

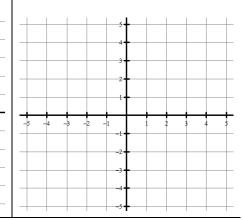
b.
$$\int_2^1 f(x) \, dx =$$

$$e. \int_4^2 f(x) \, dx =$$

c.
$$\int_{1}^{5} 2f(x) dx =$$


f.
$$\int_{-4}^{1} |f(x)| dx =$$


Sketch a graph of the definite integral. Evaluate the integral with a graphing calculator.


2.
$$\int_0^3 -\sqrt{x+1} \ dx =$$

3.
$$\int_{-2}^{3} |x+1| dx =$$

4.
$$\int_{1}^{-3} \left(-\frac{x}{2} + 1 \right) dx =$$

Let f and g be continuous functions that produce the following definite integral values.

$$\int_{-3}^2 f(x) \, dx = 2$$

$$\int_{-3}^{2} f(x) \, dx = 2 \qquad \int_{2}^{7} f(x) \, dx = -5 \qquad \int_{-3}^{2} g(x) \, dx = 6$$

$$\int_{-3}^2 g(x) \, dx = 6$$

Find the following.

5.
$$\int_{2}^{7} 2f(x) dx$$

6.
$$4 \int_{-3}^{2} f(x) dx$$
 7. $\int_{-3}^{7} f(x) dx$

7.
$$\int_{-3}^{7} f(x) \, dx$$

$$8. \int_2^{-3} g(x) \, dx$$

9.
$$\int_{-3}^{2} [g(x) - f(x)] dx$$

$$10. \quad \left| \int_2^7 f(x) \, dx \right|$$

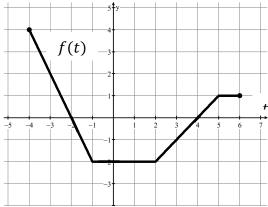
11.
$$-\int_{7}^{2} f(x) dx$$

Let f and g be continuous functions that produce the following definite integral values.

$$\int_{1}^{2} f(x) dx = -2 \qquad \int_{1}^{6} f(x) dx = 4 \qquad \int_{1}^{6} g(x) dx = 8$$

$$\int_1^6 f(x) \, dx = 4$$

$$\int_1^6 g(x) \, dx = 8$$


Find the following.

$12. \int_2^2 g(x) dx$	$13. \int_6^1 g(x) dx$	14. $3\int_{1}^{2} f(x) dx$	$15. \int_2^6 f(x) dx$
16 6 f (w) 2 (w) dw	17 (⁶ [2f(v) ~(v)] dv	10 (6) (1) (1) (1)	10 (6 (4) -(4)
16. $\int_{1}^{1} f(x) - g(x) dx$	17. $\int_{1}^{6} [3f(x) - g(x)] dx$	[18. $\int_{1} f(x) - g(x) dx$	[19. $ J_1 f(x) - g(x) dx$]

6.6 Properties of Definite Integrals

Test Prep

20.

The graph of the function f is shown above. Let g be the function defined by $g(x) = \int_2^x f(t) dt$.

- a. Find the average rate of change of g from x = -4 to x = 6.
- b. Find the instantaneous rate of change of g with respect to x at x = 5, or state that it does not exist.
- c. On what open intervals, if any, is the graph of g concave down? Justify your answer.
- d. Find all x-values in the interval -4 < x < 6 at which g has a critical point. Classify each critical point as the location of a local minimum, a local maximum, or neither. Justify your answers.