Find the value of the definite integral. Use a calculator to check your answer.

1. $\int_{0}^{4}(2 x+4) d x$

$$
\begin{gathered}
\frac{2 x^{2}}{2}+\left.4 x\right|_{0} ^{4} \\
(16+16)-(0) \\
32
\end{gathered}
$$

For \# 7-13, use the given information to find the value of the function.
7. If $f^{\prime}(x)=\cos x$ and $f(-\pi)=12$, then $f\left(\frac{3 \pi}{2}\right)=8$ 8. Calculator active. If $f^{\prime}(x)=\sin (3 x)+e^{x}$ and

$$
\begin{aligned}
& 12+\int_{-\pi}^{3 \pi / 2} \cos x d x \\
& 12+\left.[\sin x]\right|_{-\pi} ^{3 \pi / 2} \\
& 12+[(-1)-(0)]
\end{aligned}
$$

11
$f(1)=0.751$, then $f(4)=$

$$
\begin{aligned}
& f(1)=0.751, \text { then } f(4)= \\
& 0.751+\int_{1}^{4}\left[\sin (3 x)+e^{x}\right] d x
\end{aligned}
$$

52.0195
9. Let f be a differentiable function such that $f(1)=$ 4 and $f^{\prime}(x)=6 x^{2}+3$. What is the value of $f(3)$?

$$
\begin{aligned}
& 4+\int_{1}^{3}\left(6 x^{2}+3\right) d x \\
& 4+\left[2 x^{3}+3 x\right] 1_{1}^{3} \\
& 4+[2(27)+9]-[2+3] \\
& 4+[63]-[5]
\end{aligned}
$$

62
11. Let $h(x)$ be an antiderivative of $5-3 x$. If $h(-1)=-3$, then $h(2)=$

$$
\begin{gathered}
-3+\int_{-1}^{2}(5-3 x) d x \\
-3+\left.\left[5 x-\frac{3 x^{2}}{2}\right]\right|_{-1} ^{2} \\
-3+[10-6]-\left[-5-\frac{3}{2}\right] \\
7.5
\end{gathered}
$$

10. Calculator active. Let f be a differentiable function such that $f(0)=-0.5$ and $f^{\prime}(x)=2-\cos (e x)$. What is the value of $f(-2)$?
$-0.5+\int_{0}^{-2}(2-\cos (x)) d x$

$$
-4.7755
$$

12. Calculator active. Let $F(x)$ be an antiderivative of $\frac{\ln x}{x}$. If $F(2)=-0.13$, then $F(5)=$ $-0.13+\int_{2}^{5} \frac{\ln x}{x} d x$
0.9249
13. The graph of f is shown in the figure to the right. If $\int_{0}^{3} f(x) d x=3.5$ and $F^{\prime}(x)=f(x)$, then $F(4)-F(0)=$

(D) 5.5
(E) 4.5
14. Calculator active problem. Let $f(x)=\int_{0}^{x^{2}} \cos t d t$. At how many points in the closed interval $[-\sqrt{\pi}, \sqrt{\pi}]$ does the instantaneous rate of change of f equal the average rate of change of f on that interval?

$$
\begin{aligned}
& f^{\prime}(x)=\cos \left(x^{2}\right) \cdot 2 x \\
& f(x)=\left.\sin t\right|_{0} ^{x^{2}} \\
& f(x)=\sin x^{2}-\sin 0 \\
& f(x)=\sin x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { verage rate of change of } f \text { on that interval? } \\
& \text { Avg rate }=\frac{f(\sqrt{n})-f(-\sqrt{\pi})}{\sqrt{\pi}--\sqrt{\pi}}
\end{aligned}
$$

$$
\frac{\sin \pi-\sin (\pi)}{2 \sqrt{\pi}}=0
$$

(A) Zero
(B) One
(C) Two

$$
2 x \cos \left(x^{2}\right)=0
$$

${ }^{2}$ Graph and look for zeros on the interval $[-\sqrt{\pi}, \sqrt{\pi}]$
(D) Three
(E) Four
15. Given $h(x)=\left\{\begin{array}{ll}x-1 & \text { for } x<0 \\ \sin x & \text { for } x \geq 0\end{array}\right.$, find $\int_{-1}^{\pi} h(x) d x$

$$
\begin{aligned}
& \int_{-1}^{0}(x-1) d x+\int_{0}^{\pi} \sin x d x \\
& {\left.\left[\frac{x^{2}}{2}-x\right]\right|_{-1} ^{0}+\left.[-\cos x]\right|_{0} ^{\pi}}
\end{aligned}
$$

(0) $-\left(\frac{1}{2}+1\right)^{-1}+(-\cos \pi)-(-\cos (0))$
(A) $\frac{3}{2}$
(B) $-\frac{1}{2}$
(C) $-\frac{3}{2}$

$$
\text { (E) }-\frac{7}{2}
$$

16. A cubic polynomial function f is defined by $f(x)=\frac{2}{3} x^{3}+a x^{2}+b x+c$, where a, b, and c are constants. The function f has a local minimum at $x=-2$, and the graph of f has a point of inflection at $x=-5$. If $\int_{0}^{1} f(x) d x=\frac{15}{2}$, what is the value of c ?

$$
\begin{aligned}
& f^{\prime}(x)=2 x^{2}+2 a x+b \\
& f^{\prime \prime}(x)=4 x+2 a
\end{aligned}
$$

$$
\operatorname{lom}_{\mathrm{on}} \rightarrow 2(-2)^{2}+2(10)(-2)+b=0
$$

$$
8-40+b=0
$$

$$
b=32
$$

$$
\text { Pt of } \rightarrow 4(-5)+2 a=0
$$

inflection

$$
\begin{array}{r}
2 a=\left.20 \quad\left(\frac{1}{3} \frac{x}{4}+\frac{10}{3} x^{3}+16 x^{2}+c x\right]\right|_{0}= \\
a=10+16+c)-(0)=\frac{15}{2} \\
C=-12
\end{array}
$$

