7.1 Modeling with Differential Equations

Calculus	ing with Different	•	me:			CA #1
	erential equation that			hip. If necessary	y, use <i>k</i> as the consta	nt of
1. The rate	of change of Y with re onal to the square of x.	spect to <i>w</i> is directly	2.		ge of <i>S</i> with respect to he square root of <i>u</i> an ⁷ .	-
proportic	easing with respect to x onal to the cube root of f L is 12 when $m = 5$.	<i>m</i> . The rate of	4.		ge of <i>U</i> with respect to tional to the cube of <i>v</i> 5 when $v = \frac{1}{2}$.	
where t is and h is a proportion start of the	ht of a rocket is given is measured in seconds measured in meters. T onal to the cube root of he launch. At 12 second ers per second per seco	since the launch he acceleration is the time since the nds, the acceleration	6.	quantities <i>A</i> and finds that the qua quantity of <i>B</i> incomparison that the rate of compared to the quantity	dying the relationship B in an experiment. The antity of A decreases a creases. The scientist hange of the quantity of B is inversely the square of the quant	The scientist and the determines of A with y
for Pre-C the schoo	ber of packets, p , Mr. Calculus is increasing a of year. The rate of cha o time t is inversely pr og of t .	s he nears the end of ange of p with	8.	is given by the fu in minutes since	ning down his street. If unction $p(t)$, where t the start of his run. H wersely proportional t e start of his run.	is measured lis
	$\frac{\varepsilon^4}{\gamma} = \frac{\varepsilon^{4P}}{d_z p} .8$	$\frac{3}{2}\frac{n!}{n!} = \frac{3}{2b} .7$		$e. \frac{z_B}{dA} = \frac{A}{Bz}$	$\overline{i}/\overline{s}$ 015.1 = $\frac{a^{2}b}{s^{4}b}$.2	

 $\overline{m}\sqrt{\varepsilon}\partial \nabla 10.7 = \frac{4b}{xb}$.

 $\frac{1}{\varepsilon_a} = -\frac{bb}{\delta_a} + \frac{1}{\varepsilon_a}$

 $\frac{a}{\underline{n}\wedge y} = \frac{\kappa p}{sp} \quad . \zeta$

 $I. \quad \frac{y_b}{wb} = \frac{y_b}{wb} \quad .$