7.1 Modeling with Differential Equations

Write a differential equation that describes each relationship. If necessary, use \boldsymbol{k} as the constant of proportionality.

1. The rate of change of Y with respect to w is directly proportional to the square of x .
2. The rate of change of S with respect to y is proportional to the square root of u and inversely proportional to v.
3. L is increasing with respect to x at a rate that is proportional to the cube root of m. The rate of change of L is 12 when $m=5$.
4. The rate of change of U with respect to a is inversely proportional to the cube of v. The rate of change of U is -5 when $v=\frac{1}{2}$.
5. The height of a rocket is given by the function $h(t)$, where t is measured in seconds since the launch and h is measured in meters. The acceleration is proportional to the cube root of the time since the start of the launch. At 12 seconds, the acceleration is 3 meters per second per second.
6. A scientist is studying the relationship of two quantities A and B in an experiment. The scientist finds that the quantity of A decreases and the quantity of B increases. The scientist determines that the rate of change of the quantity of A with respect to the quantity of B is inversely proportional to the square of the quantity of B.
7. The number of packets, p, Mr. Sullivan completes for Pre-Calculus is increasing as he nears the end of the school year. The rate of change of p with respect to time t is inversely proportional to the natural \log of t.
8. Mr. Brust is running down his street. His position is given by the function $p(t)$, where t is measured in minutes since the start of his run. His acceleration is inversely proportional to the cube of the time since the start of his run.

$\frac{\varepsilon^{7}}{\psi}=\frac{z^{\nexists p}}{d_{z} p} \quad 8$	$\frac{z u_{1}}{y}=\frac{p p}{d p} \cdot L$	$\frac{z}{} \frac{z}{y}=\frac{a p}{v p} \cdot 9$	
$\frac{\varepsilon^{a}}{s 290}-=\frac{p p}{n p} \quad$ 't		$\frac{a}{n \wedge \gamma}=\frac{\kappa p}{s p} \quad \tau$	$z^{x} y=\frac{m p}{\lambda p} \cdot \mathrm{I}$

