7.2 Verifying Solutions for Differential Equations

Calculus Name:

For each differential equation, find the particular solution that passes through the given point.

1.
$$\frac{dy}{dx} = \frac{12}{3x-2} - \frac{1}{x^2}$$
; (1, -3)

$$2. \frac{dy}{dx} = 10\sin(5x); \left(\frac{\pi}{5}, 1\right)$$

3.
$$\frac{dy}{dx} = 6e^{2x} - 4x$$
; (0, -2)

4.
$$\frac{d^2y}{dx^2} = \sin(2x)$$
 and $y'\left(\frac{\pi}{6}\right) = \frac{5}{4}$ and $y\left(\frac{\pi}{2}\right) = \pi$

5.
$$\frac{d^2y}{dx^2} = e^{2x} + 4x$$
 and $y'(0) = 2$ and $y(0) = \frac{3}{4}$

- 6. For what value of k, if any, will $y = ke^{-3x} + 8\sin(2x)$ be a solution to the differential equation $y'' + 4y = 26e^{-3x}$?
- 7. For what value of k, if any, will $y = k \cos(3x) \sin(5x)$ be a solution to the differential equation $y'' + 25y = 8\cos(3x)$?

Answers to 7.2 CA #1

1. $y = 4 \ln 3x - 2 + \frac{1}{x} - 4$	$2. \ \ y = -2\cos(5x) - 1$	$3. \ y = 3e^{2x}$	$-2x^2-5$
4. $y = -\frac{1}{4}\sin(2x) + \frac{3}{2}x + \frac{\pi}{4}$	5. $y = \frac{1}{4}e^{2x} + \frac{2}{3}x^3 + \frac{3}{2}x + \frac{1}{2}$	6. $k = 2$	7. $k = \frac{1}{2}$