7.2 Verifying Solutions

Derivatives can be used to verify that a function is a solution to a given differential equation.
We already covered some of this in lesson 6.8 , where we found particular solutions. Let's remind ourselves what we did.

1. If $\frac{d y}{d x}=e^{2 x}-2 x^{2}$, find the particular solution of y if $y(0)=4$.
2. This problem is exactly the same. A curve has a slope of $e^{2 x}-2 x^{2}$ at each point (x, y) on the curve. What is an equation for this curve if it passes through the point $(0,4)$?
3. If $\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}}+(1-2 x)^{2}$, find the particular solution of y if $y^{\prime}(1)=\frac{7}{6}$ and $y(1)=0$.

RECALL

$$
\begin{aligned}
\frac{d}{d x} \sin x= & \frac{d}{d x} \cos x= \\
\int \sin x d x= & \int \cos x d x=
\end{aligned}
$$

4. For what value of k, if any, will $y=k e^{-4 x}-2 \sin (5 x)$ be a solution to the differential equation $y^{\prime \prime}+25 y=-82 e^{-4 x}$?

For each differential equation, find the particular solution that passes through the given point.

1. $\frac{d y}{d x}=4 x+2 ;(-1,3)$
2. $\frac{d y}{d x}=\frac{3}{2-x}+6 x^{2}$;
$(1,1)$
3. $\frac{d y}{d x}=8 \cos (4 x) ;\left(\frac{\pi}{8},-2\right)$
4. $\frac{d y}{d x}=9 e^{3 x}-1 ;(0,7)$
5. $\frac{d^{2} y}{d x^{2}}=\frac{1}{(2-x)^{2}}+1$ and $y^{\prime}(3)=6$ and $y(1)=4$
6. $\frac{d^{2} y}{d x^{2}}=e^{2 x}-x$ and $y^{\prime}(0)=\frac{3}{2}$ and $y(0)=\frac{3}{4}$

Find the value of \boldsymbol{k} of each equation that would be a solution to the given differential equation.

7. $y=3 k e^{2 x}+\cos (4 x) \quad$ 8. $y=k \sin (-x)+2 \cos (3 x)$

Diff Eq: $\frac{y^{\prime \prime}}{2}+8 y=15 e^{2 x}$
Diff Eq: $2 y^{\prime \prime}+18 y=32 \sin (-x)$
9. $y=e^{-3 x}+k e^{4 x}$

Diff Eq: $3 y^{\prime}+y^{\prime \prime}=-14 e^{4 x}$
10. $y=e^{3 x}+k e^{-2 x}$

Diff Eq: $y^{\prime \prime}-2 y^{\prime}-3 y=4 e^{-2 x}$

7.2 Verifying Solutions

11. Of the following, which are solutions to the differential equation $y^{\prime \prime}-5 y^{\prime}+4 y=0$
I. $y=5 \cos (2 x)$
II. $y=2 e^{x}$
III. $y=C e^{4 x}$, where C is a constant.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only
12. Consider the differential equation $\frac{d y}{d x}=(y-4)^{3} \sin \left(\frac{\pi x}{2}\right)$. There is a horizontal line with equation $y=c$ that satisfies this differential equation. Find the value of c.
