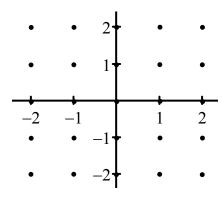
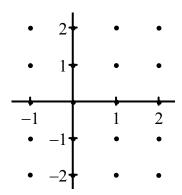

Write your questions and thoughts here!

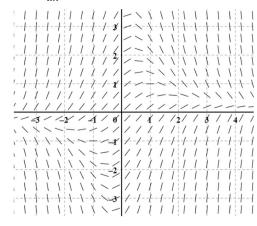
A slope field represents a differential equation on an xy-plane. It shows the "slope" of all the particular solutions to the differential equation.

Below is a differential equation with its accompanying slope field.

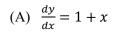

$$\frac{dy}{dx} = 2x$$



Use the differential equation to create a slope field.

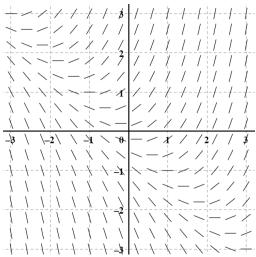

$$1. \ \frac{dy}{dx} = xy$$

$$2. \ \frac{dy}{dx} = y - 2x$$



- 3. The figure below shows the slope for the differential equation $\frac{dy}{dx} = 1 xy$.
 - a. Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve y = f(x) through the point (-1, -2).

4. Below is a slope field for which of the following differential equations?

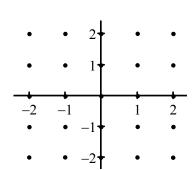


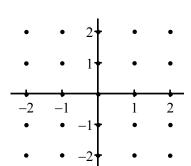
(B)
$$\frac{dy}{dx} = x^2$$

(C)
$$\frac{dy}{dx} = x + y$$

(D)
$$\frac{dy}{dx} = \frac{x}{y}$$

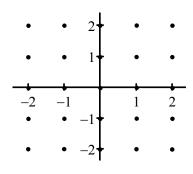
(E)
$$\frac{dy}{dx} = \ln y$$

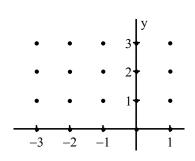

7.3 Sketching Slope Fields


Calculus

Practice

Draw a slope field for each of the following differential equations. Use each of the coordinate points shown in the graph.


$$1. \ \frac{dy}{dx} = x + y$$



$$3. \ \frac{dy}{dx} = \frac{x}{y}$$

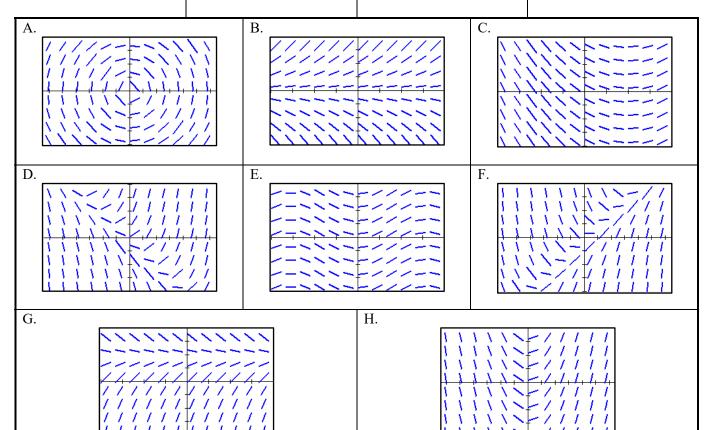
$$4. \quad \frac{dy}{dx} = \frac{x+1}{y-2}$$

Write the letter of each slope field next to its matching differential equation.

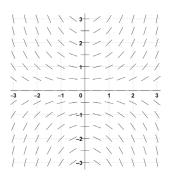
$$5. \underline{\qquad} \frac{dy}{dx} = \sin x$$

6.
$$\frac{dy}{dx} = 0.5x - 1$$
 7. $\frac{dy}{dx} = x - y$

7. _____
$$\frac{dy}{dx} = x - y$$

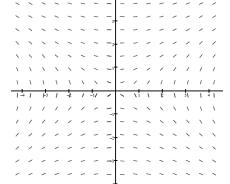

$$8. \underline{\qquad} \frac{dy}{dx} = 0.5y$$

9.
$$\frac{dy}{dx} = 2 - y$$


$$10. \underline{\qquad} \frac{dy}{dx} = -\frac{x}{y}$$

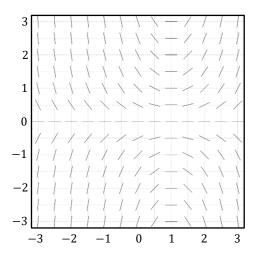
$$11. \underline{\qquad} \frac{dy}{dx} = x$$

$$12. \underline{\qquad} \frac{dy}{dx} = x + y$$



- 13. Consider the differential equation given by $\frac{dy}{dx} = \frac{xy}{2}$ and its slope field shown below.
 - a. Calculate $\frac{dy}{dx}$ at the point (1, 1) and verify that the result agrees with the figure.

b. Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve y = f(x) through the point (1, 1). Then use your tangent line equation to estimate the value of f(1.2).


- 14. The figure below shows the slope field for the differential equation $\frac{dy}{dx} = \frac{x}{2y}$.
 - a. Calculate $\frac{dy}{dx}$ at the point (3, 2) and verify that the result agrees

b. Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve y = f(x)through the point (3, 2).

15.

Shown above is a slope field for which of the following differential equations?

(A)
$$\frac{dy}{dx} = xy - y$$

(B)
$$\frac{dy}{dx} = xy + y$$

(C)
$$\frac{dy}{dx} = x - y^2$$

(D)
$$\frac{dy}{dx} = (x - 1)y^2$$

$$(E) \quad \frac{dy}{dx} = (x-1)^3$$