Match the slope field with the differential equation．

1．$\frac{d y}{d x}=x-y$

（A）	（B）	（C）	（D）
$111 \hat{t}^{y} / 111$		$\begin{array}{llll}1 & 1 & 3^{\text {a }} \text { ¢ }\end{array}$	，1 $\sin ^{*} \backslash \backslash$
$111=111$	11121	111210	ノ 1121
\＋1 1	$111 \downarrow-\ 1$	$111+-1$	ーノ1 ${ }^{1}$
$\stackrel{-3}{-2}$-1 1		－l_{-3}^{1}	
$1 / 1+1$	1／1－－1 111		
－－／1 1			
－1 ノ			
$111-111$	$1-1-2 \mid 11$	$1-1-211$	
\－2 1 ／			
$11-7111$	－\ \－3｜1 1	$-11-37111$	

（A）$\frac{d y}{d x}=(x-2)^{2}$
（D）$\frac{d y}{d x}=x+y$
（B）$\frac{d y}{d x}=0.5 x-1$
（E）$\frac{d y}{d x}=0.5 y$
（C）$\frac{d y}{d x}=x-y$

For each slope field，plot and label the points A and B and sketch the particular solution that passes through each of those points．（Two separate solutions for each slope field．）
3．$\frac{d y}{d x}=2 x y$
4．$\frac{d y}{d x}=e^{x} y$

Point A：$(0,1)$
Point B：$(2,-1)$

Point A：$(2,1)$
Point B：$(0,-1)$
5. Let $f(t)$ be an increasing, differentiable function. Explain why the following slope field cannot represent the differential equation $\frac{d y}{d t}=f^{\prime}(t)$

6. Explain why the following slope field cannot represent the differential equation $\frac{d y}{d t}=-0.3 y$

Consider the differential equation and its slope field. Describe all points in the $x y$-plane that match the given condition.

7. $\frac{d y}{d x}=\frac{y-1}{\sqrt{x+1}}$

When is $\frac{d y}{d x}$ positive?
8. $\frac{d y}{d x}=3 x+2 y$

When does $\frac{d y}{d x}=-2$?

Answers to 7.4 CA \#1

1. C
2. B

3. Possible answer: When $y=0, \frac{d y}{d t}=0$. However, in the slope field, the slopes of the line segments for $y=0$ are nonzero.
4.

7. All points where $y>1$.
5. $\frac{d y}{d t}>0$ when $y>0$, but the slope field shows line segments with nonpositive slope.
8. All points that fall on the line

$$
y=-\frac{3}{2} x-1
$$

