7.4 Reasoning Using Slope Fields

Match the slope field with the differential equation.

1. $\frac{d y}{d x}=x y$

2.

(A) $\frac{d y}{d x}=x-y$
(D) $\frac{d y}{d x}=y-x$
(B) $\frac{d y}{d x}=x+y$
(E) $\frac{d y}{d x}=x y^{2}$
(C) $\frac{d y}{d x}=(x-1)(y-1)$

For each slope field, plot and label the points A and B and sketch the particular solution that passes through each of those points. (Two separate solutions for each slope field.)
3. $\frac{d y}{d x}=x^{2}+y$

Point A: $(0,2)$
Point B: $(0,-1)$
4. $\frac{d y}{d x}=\frac{x^{2}}{y}$

Point A: $(0,1)$
Point B: $(0,-2)$
5. Explain why the following slope field cannot represent the differential equation $\frac{d y}{d t}=0.6 y$

6. Explain why the following slope field cannot represent the differential equation $\frac{d y}{d t}=-0.2 y$

Consider the differential equation and its slope field. Describe all points in the $x y$-plane that match the given condition.

7. $\frac{d y}{d x}=\frac{x-2}{y}$

When does $\frac{d y}{d x}=1$?
8. $\frac{d y}{d x}=\frac{x+1}{y^{2}}$

When is $\frac{d y}{d x}$ positive?

Answers to 7.4 CA \#2

6. $\frac{d y}{d x}<0$ when $y>0$, but the slope field shows line segments with positive slope.
4.

7. All points that fall on the line $y=x-2$
5. Possible answer: When $y=$ $0, \frac{d y}{d t}=0$. However, in the slope field, the slopes of the line segments for $y=0$ are nonzero.
8. All points that where $x>-1$

