7.4 Reasoning Using Slope Fields

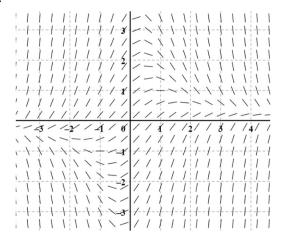
Notes

Write your questions and thoughts here!

Identify the particular solution that goes through a point.

1. The figure to the right shows the slope for the differential equation $\frac{dy}{dx} = 1 - xy$.

- a. Sketch the graph of a particular solution that contains (0, 2). Label this point as Point A.
- b. Sketch the graph of a particular solution that contains (-1, -2). Label this point as Point B.



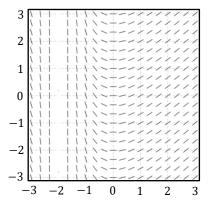
2. The slope field for a certain differential equation is shown to the right. Which of the following could be a solution to the differential equation with the initial condition y(0) = 0?

$$(A) \quad y = \frac{x}{x^2 - 4}$$

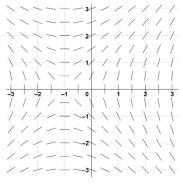
(C)
$$y = e^{x+2}$$

(B)
$$y = \frac{\tan x}{2+x}$$

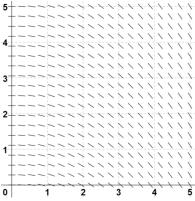
(D)
$$y = \frac{x^2}{2+x}$$



3. Consider the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$ and its slope field shown. Describe all points in the xy-plane, $y \neq 0$, for which $\frac{dy}{dx} = -1$.



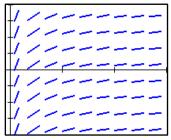
4. Explain why the following could not be a slope field for the differential equation $\frac{dy}{dt} = -0.3y$



7.4 Reasoning Using Slope Fields

The slope field from a certain differential equation is shown for each problem. The multiple choice answers are either differential equations OR a specific solution to that differential equation.

1.



(A)
$$y = \ln x$$

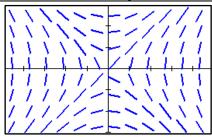
(D)
$$y = \cos x$$

(B)
$$y = e^x$$

(E)
$$y = x^2$$

(C)
$$y = e^{-x}$$

2.



(A)
$$\frac{dy}{dx} = x + y$$

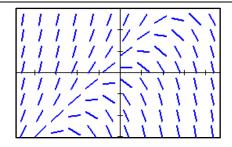
$$(D) \frac{dy}{dx} = (x - 1)y$$

(B)
$$\frac{dy}{dx} = \frac{x}{y}$$

(E)
$$\frac{dy}{dx} = x(y-1)$$

(C)
$$\frac{dy}{dx} = \frac{y}{x}$$

3.



(A)
$$\frac{dy}{dx} = y - x$$

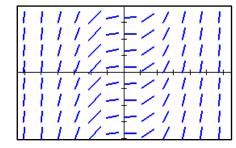
(D)
$$\frac{dy}{dx} = y(x - 1)$$

(B)
$$\frac{dy}{dx} = -\frac{x}{y}$$

(E)
$$\frac{dy}{dx} = x(y-1)$$

(C)
$$\frac{dy}{dx} = -\frac{y}{x}$$

4.



(A)
$$y = \sin x$$

(D)
$$y = \frac{1}{6}x^3$$

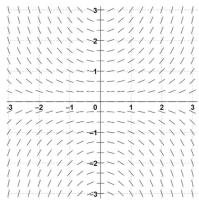
(B)
$$y = \cos x$$

(E)
$$y = \frac{1}{4}x^4$$

(C)
$$y = x^2$$

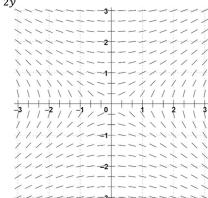
For each slope field, plot and label the points A and B and sketch the particular solution that passes through each of those points. (Two separate solutions for each slope field.)

$$5. \quad \frac{dy}{dx} = \frac{xy}{2}$$



Point A: (0, 1) Point B: (-2, -1)

$$6. \quad \frac{dy}{dx} = \frac{x}{2y}$$



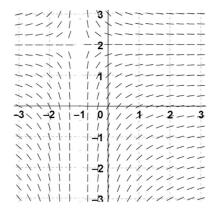
Point A: (0, 1) Point B: (-2, 0)

7. The slope field for a certain differential equation is shown. Which of the following could be a solution to the differential equation with initial condition y(2) = 0?

(B)
$$y = \frac{4}{x+1} - 2$$

$$(C) \quad y = \ln|1 - x|$$

(D)
$$y = \frac{3x^2}{x+1} - 6$$



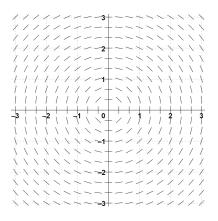
8. The slope field for a certain differential equation is shown. Which of the following could be a solution to the differential equation with the initial condition y(0) = 1?

$$(A) \quad y = \frac{x}{y} + 1$$

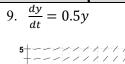
$$(B) \quad y = -\frac{x}{y} + 1$$

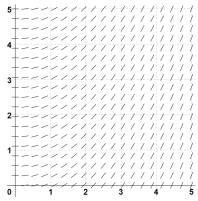
(C)
$$x^2 + (y+1)^2 = 4$$

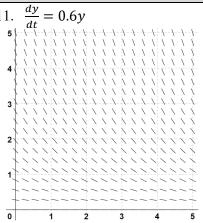
(D)
$$x^2 + y^2 = 1$$



For each problem below a slope field and a differential equation are given. Explain why the slope field CANNOT represent the differential equation.

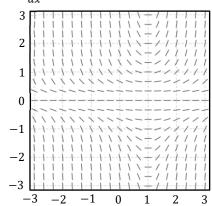




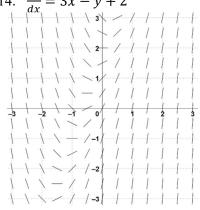


Consider the differential equation and its slope field. Describe all points in the xy-plane that match the given condition.

$$13. \ \frac{dy}{dx} = y^2(x-1)$$



$$14. \ \frac{dy}{dx} = 3x - y + 2$$

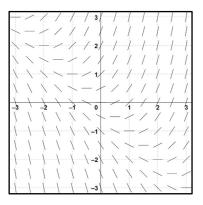


When does
$$\frac{dy}{dx} = 1$$
?

7.4 Reasoning Using Slope Fields

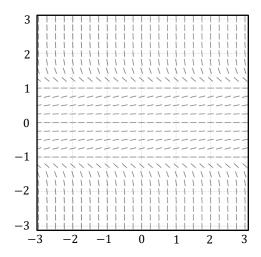
Test Prep

15.



The slope field for a certain differential equation is shown above. Which of the following statements about a solution y = f(x) to the differential equation must be false?

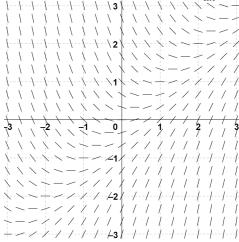
- The graph of the particular solution that satisfies f(2) = -2 has a relative minimum at x = 2. (A)
- The graph of the particular solution that satisfies f(-1) = -1 is concave up on the interval -2 < x < 1. (B)
- The graph of the particular solution that satisfies f(1) = -2 is linear. (C)
- The graph of the particular solution that satisfies f(-1) = 2 is concave up on the interval -3 < x < 3. (D)



Shown above is a slope field for the differential equation $\frac{dy}{dx} = y^2(1 - y^2)$. If y = f(x) is the solution to the differential equation with initial condition f(1) = 2, then $\lim_{x \to \infty} f(x)$ is

- (A) $-\infty$
- (B) -1
- (C) 0
- (D) 1
- (E) ∞

17. The figure below shows the slope field for the differential equation $\frac{dy}{dx} = x - y$



- a. Sketch the graph of a particular solution that contains (-1, -1). Label this point as Point A.
- b. Sketch the graph of a particular solution that contains (1, -1). Label this point as Point B.
- c. State a point where $\frac{dy}{dx} = 0$. Find $\frac{d^2y}{dx^2}$ and use it to verify if your point is a max or min.