Practice

Calculus
The slope field from a certain differential equation is shown for each problem. The multiple choice answers are either differential equations OR a specific solution to that differential equation.
1.

(A) $y=\ln x$
(D) $y=\cos x$
(B) $y=e^{x}$
(E) $y=x^{2}$
(C) $y=e^{-x}$

(A) $\frac{d y}{d x}=y-x$
(D) $\frac{d y}{d x}=y(x-1)$
(B) $\frac{d y}{d x}=-\frac{x}{y}$
(E) $\frac{d y}{d x}=x(y-1)$
(C) $\frac{d y}{d x}=-\frac{y}{x}$
2.

(A) $\frac{d y}{d x}=x+y$
(D) $\frac{d y}{d x}=(x-1) y$
(B) $\frac{d y}{d x}=\frac{x}{y}$
(E) $\frac{d y}{d x}=x(y-1)$
(C) $\frac{d y}{d x}=\frac{y}{x}$
4.

(A) $y=\sin x$
(D) $y=\frac{1}{6} x^{3}$
(B) $y=\cos x$
(E) $y=\frac{1}{4} x^{4}$
(C) $y=x^{2}$

For each slope field, plot and label the points A and B and sketch the particular solution that passes through each of those points. (Two separate solutions for each slope field.)
5. $\frac{d y}{d x}=\frac{x y}{2}$

Point A: $(0,1)$
Point B: $(-2,-1)$
6. $\frac{d y}{d x}=\frac{x}{2 y}$

Point A: $(0,1)$
Point B: $(-2,0)$

7．The slope field for a certain differential equation is shown．Which of the following could be a solution to the differential equation with initial condition $y(2)=0$ ？
（A）$y=\frac{2 x-4}{x+1}$
（B）$y=\frac{4}{x+1}-2$

（C）$y=\ln |1-x|$
（D）$y=\frac{3 x^{2}}{x+1}-6$

$\begin{array}{lll} 1-1 & 1 \\ 1 & 1 \end{array}$	
－ 111	
$\cdots \cdots 1+1$	
－ 11111	
11111	
$-3 \backslash \backslash 2\| \|-1 \mid 0$	$1,1-2-2$
\1｜।｜1	／
＊1－1－1－1－1	1
\1111－11	11
\1111 11	1ノノノーンーー
$x 1+1+1+2$	イイインーーー
\1111 11	11
111111	11

8．The slope field for a certain differential equation is shown．Which of the following could be a solution to the differential equation with the initial condition $y(0)=1$ ？
（A）$y=\frac{x}{y}+1$
（B）$y=-\frac{x}{y}+1$

（C）$x^{2}+(y+1)^{2}=4$
（D）$x^{2}+y^{2}=1$

For each problem below a slope field and a differential equation are given．Explain why the slope field CANNOT represent the differential equation．

9．$\frac{d y}{d t}=0.5 y$

One possible answer：When $y=0, \frac{d y}{d t}=0$ ．However，in the slope field，the slopes of the line segments for $\boldsymbol{y}=0$ are nonzero．

10．$\frac{d y}{d t}=-0.2 y$

$\frac{d y}{d x}<0$ when $y>0$ ，but the slope field shows line segments with positive slope．

11．$\frac{d y}{d t}=0.6 y$

$\frac{d y}{d x}>0$ when $y>0$ ，but the slope field shows line segments with negative slope．

Consider the differential equation and its slope field. Describe all points in the $x y$-plane that match the given condition.

When is $\frac{d y}{d x}$ is positive?

All points that make $y>-2 x+\frac{1}{2}$ true.
13. $\frac{d y}{d x}=y^{2}(x-1)$

When are the slopes nonnegative?

14. $\frac{d y}{d x}=3 x-y+2$

When does $\frac{d y}{d x}=1$?

$$
\begin{aligned}
3 x-y+2 & =1 \\
-y & =-3 x-1 \\
y & =3 x+1
\end{aligned}
$$

All points on the line $y=3 x+1$ make $\frac{d y x}{x}=1$.

Test Prep

7.4 Reasoning Using Slope Fields

The slope field for a certain differential equation is shown above. Which of the following statements about a solution $y=f(x)$ to the differential equation must be false?
(A) The graph of the particular solution that satisfies $f(2)=-2$ has a relative minimum at $x=2$.
(B) The graph of the particular solution that satisfies $f(-1)=-1$ is concave up on the interval $-2<x<1$.
(C) The graph of the particular solution that satisfies $f(1)=-2$ is linear.
(D) The graph of the particular solution that satisfies $f(-1)=2$ is concave up on the interval $-3<x<3$.
16.

Shown above is a slope field for the differential equation $\frac{d y}{d x}=y^{2}\left(1-y^{2}\right)$. If $y=f(x)$ is the solution to the differential equation with initial condition $f(1)=2$, then $\lim _{x \rightarrow \infty} f(x)$ is
(A) $-\infty$
(B) -1
(C) 0
(D) 1
(E) ∞
17. The figure below shows the slope field for the differential equation $\frac{d y}{d x}=x-y$

a. Sketch the graph of a particular solution that contains $(-1,-1)$. Label this point as Point A.
b. Sketch the graph of a particular solution that contains $(1,-1)$. Label this point as Point B.
c. State a point where $\frac{d y}{d x}=0$. Find $\frac{d^{2} y}{d x^{2}}$ and use it to verify if your point is a max or min.

Answers will vary. One example is the point $(1,1)$. Because $\frac{d^{2} y}{d x^{2}}>0$ because the slope field shows a concave up graph. Because $\frac{d y}{d x}=0$ as well, this point represents a minimum.

