7.5 Euler's Method

Calculus

1. The table below gives the values of f', the derivative of f. If f(1) = 2, what is the approximation to f(2.5) obtained by using Euler's method with 3 steps of equal size?

building by asing bur	er billetilea with 5 bt	eps of equal size.		
x	1	1.5	2.0	2.5
f'(x)	0.3	0.7	1.2	1.8

X	7	゚゚゚゚゚゚゚゚゚゚	new y
	ž	0.3	2+0.3(0.5)=2.15
1.5	2.15	6.0	2.15+0.7(0.5)=2.5
a	2.5	1.2	2.15+0.7(0.5)=2.5
2.5	1 3.1	1	1

2. The table below gives the values of f', the derivative of f. If f(2) = 3, what is the approximation to f(2.6)obtained by using Euler's method with 2 steps of equal size?

		\boldsymbol{x}		2		2.3	2.6	
		f'(x)		-0.5	_	-0.3	-0.1	
X	7	১′		ew y	J = ,	ک، + ۲۰ ((\delta \times)	
2	3	-0.5	3+-	-0.5(0.3)=2.85			$\Lambda_{\Delta \times} = 0.3$	3
2.3	7.81	6.0-	ム.85	-0.5(0.3)= 2.85 5+-0.3(0.3)=2.7	6			
2.6	2.76					(()	_	1
,		•	ı			<u> </u>	≈ 2.76	

3. The table below gives the values of f', the derivative of f. If f(3) = 5, what is the approximation to f(4.0)obtained by using Euler's method with 2 steps of equal size?

 $x \mid y \mid y' \mid \text{new } y$ $y = y_1 + y' \cdot (\Delta x)$						
f'(x)	0.1	0.3	0.5	0.7	0.9	1.1
x	3	3.25	3.5	3.75	4.0	4.25

4. The table below gives the values of f', the derivative of f. If f(1.5) = 4, what is the approximation to f(1)obtained by using Euler's method with 2 steps of equal size?

Obtained	oy using	Luici 3	memoa wi	iii 2 steps of equal	i size.		
	x		1	1.25	1.5	1.75	2.0
f'	(x)		0.3	0.4	0.6	0.9	1.3
X	7	ا مر	new		γ = γ , +	y'(Δ×)	Negative!!
1.5	4	0.6	4+0.6	(-0.25)=3.85	5 51	4.	x=-0.25
1.25	3.85	0.4	3.95+0	(-0.25)=3.85 3.4(-0.25)=3.7	· S	7)	K = 0.23
l	3.75			J	ક (ı)≿	3 75	
	•		•		ے (۱) د	. 5.10	

6. Let
$$h(x) = \int_0^x \sqrt{1 + 3t^2} \, dt$$
. Use Euler's method, starting at $x = 0$ with 3 steps of equal size, to approximate $h(3)$.

Let
$$h(x) = \int_0^x \sqrt{1 + 3t^2} dt$$
. Use Euler's method, starting at $x = 0$ with 3 steps of equal size, to approximate $h(3)$.

$$h'(x) = \sqrt{1 + 3x^2}$$

$$X \quad h(x) \quad h'(x) \quad new \quad h(x)$$

$$O \quad O \quad | \quad o + | (i) = 1$$

$$1 \quad | \quad \sqrt{1 + 3} = \lambda \quad | \quad | + \lambda(i) = 3$$

$$2 \quad 3 \quad \sqrt{1 + 12} = \sqrt{13} \quad 3 + \sqrt{13}(i)$$

$$3 \quad 3 + \sqrt{13}$$

$$h'(3) \approx 3 + \sqrt{13}$$

7. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = 2x - y$ with initial condition f(1) = 0. What is the approximation for f(1.3) obtained using Euler's method with 3 steps of equal length, starting at x = 1?

8. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = -\frac{x}{y}$ with initial condition f(0) = 1. What is the approximation for f(0.3) obtained using Euler's method with 3 steps of equal length, starting at x = 0?

9. Let
$$y = f(x)$$
 be the solution to the differential equation $\frac{dy}{dx} = y$ with initial condition $f(0) = 1$. What is the approximation for $f(0.5)$ obtained using Euler's method with a step size of $\Delta x = 0.1$, starting at $x = 0$?

approximation for f(0.5) obtained using Euler's method with a step size of $\Delta x = 0.1$, starting at x = 0?

XIYI	2		y= y, + y. (Δx)
0.1 1.1	1.1	+ (0,1)= . 1. + . (0,1)= .2 1.2 + .2 (0,1)= .33	0.1
0.5 1.531	1.331	1.21+1.21(0.1)=1.33 1.331+1.331(0.1)=1.464 1.4641+1.4641(0.1)= .61051	f(0.5)=1.6105

10. Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = x + y$ with initial condition f(0) = 1. What is the approximation for f(0.8) obtained using Euler's method with 4 steps of equal length, starting at x = 0?

X	y	y '	New 9	カ= ツ, + ツ· (Δ×)	
0.2	 a	1:1	1+1(0,2)=1,2	$\int_{\Delta x} \frac{0.3-0}{4} = 0.3$	7
0.4 0.6 0.8	1.48 1.856 12.3472	1.88 2.456	1+1(0.2) = 1,2 1.2+1.4(0.2)=1.48 1.48+ 1.88(0.2)=1.856 1.856+2.46((0.2)=2.3472	f(0.8) ≈ 2.347	

No Test Prep section for this lesson as the practice problems are similar to what will be on the AP Exam.