Write your questions and thoughts here!

Recall: Implicit differentiation

$$x^2 + y^2 = 9$$

Separation of variables is like implicit differentiation backwards.

Find the general solution of each differential equation.

$$1. \ \frac{dy}{dx} = \frac{x^2}{y}$$

$$2. \ \frac{dy}{dx} = (\sin x)y^2$$

$$3. \ \frac{dy}{dx} = xy$$

$$4. \ \frac{dy}{dx} = 2xy + 4x$$

7.6 Separation of Variables (General Solutions)

Find the general solution of each differential equation.

1. $\frac{dy}{dx} = \frac{3x^2}{y}$

$$1. \ \frac{dy}{dx} = \frac{3x^2}{y}$$

$$2. \ \frac{dy}{dx} = 8x^2y$$

$$3. \ \frac{dy}{dx} = e^x y^2$$

$$4. \ \frac{dy}{dx} = -2x(y-3)$$

5.	$\frac{dy}{dx}$	=	у	cos	x
----	-----------------	---	---	-----	---

6.
$$\frac{dy}{dx} = (y+5)(x+2)$$

7.
$$\frac{dy}{dx} = e^{x-y}$$

8.
$$\frac{dy}{dx} = \frac{2x}{x^{2}}$$

No Test Prep. We will wait for our next lesson when we can use *particular solutions* with separation of variables.