Calculus

Write your questions and thoughts here!

7.7 Separation of Variables (Particular Solutions)

1. Find the solution to the differential equation $\frac{d y}{d x}=(x y)^{2}$ with initial condition $y(1)=1$.

2. Find the solution $y=f(x)$ to the differential equation $\frac{d y}{d x}=\frac{2 x}{y}$ with initial condition $f(2)=1$.

3. Find the solution to the differential equation $\frac{d y}{d x}=(y+2) e^{x}$ with initial condition $y(0)=-1$,

7.7 Separation of Variables (Particular Solutions)

Calculus

For each differential equation, find the solution that passes through the given initial condition.

1. $\frac{d y}{d x}=y \cos x$ and $y=4$ when $x=0$
2. $\frac{d y}{d x}=\frac{6 x^{2}}{y}$ if $y(0)=-2$
3. $\frac{d y}{d x}=y \sin x$ if $y\left(\frac{\pi}{2}\right)=2$
4. $\frac{d y}{d x}=\frac{1}{5}(8-y)$ and $y=6$ when $x=0$
5. $\frac{d y}{d x}=(y+5)(x+2)$ when $f(0)=1$
6. $\frac{d y}{d x}=\frac{e^{x}}{y}$ if $y(0)=-4$
7. Find the particular solution to $\frac{d y}{d x}=e^{x-y}$ when $f(0)=2$. Sketch the graph of this particular solution on the slope field provided.

8. Find the particular solution to $\frac{d y}{d x}=x y^{2}$ if $y=1$ when $x=0$. Sketch the graph of this particular solution on the slope field provided.

7.7 Separation of Variables (Particular Solutions)

9. Consider the differential equation $\frac{d y}{d x}=e^{y}(4 x-1)$. Let $y=f(x)$ be the particular solution to the differential equation that passes through $(2,0)$.
(a) Write an equation for the line tangent to the graph of f at the point $(2,0)$. Use the tangent line to approximate $f(2.2)$.
(b) Find $y=f(x)$, the particular solution to the differential equation that passes through $(2,0)$.
10. One of Mr. Kelly's calculus students attempted to solve the differential equation $\frac{d y}{d x}=2 x y$ with initial condition $y=3$ when $x=0$. In which step, if any, does an error first appear?

Step 1: $\int \frac{1}{y} d y=\int 2 x d x$
Step 2: $\ln |y|=x^{2}+C$
Step 3: $|y|=e^{x^{2}}+C$
Step 4: Since $y=3$ when $x=0,3=e^{0}+C$.
Step 5: $y=-e^{x^{2}}+2$
(A) Step 2
(B) Step 3
(C) Step 4
(D) Step 5
(E) There is no error in the solution.
11. Consider the differential equation $\frac{d y}{d x}=6-2 y$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(0)=4$.
a. Write an equation for the line tangent to the graph of $y=f(x)$ at $x=0$. Use the tangent line to approximate $f(0.6)$.
b. Find the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(0,4)$. Is the graph of $y=f(x)$ concave up or concave down at the point $(0,4)$? Give a reason for your answer.
c. Find $y=f(x)$, the particular solution to the differential equation with the initial condition $f(0)=4$.
d. For the particular solution $y=f(x)$ found in part c , find $\lim _{x \rightarrow \infty} f(x)$.
12. The graph of the derivative of f, f^{\prime}, is shown to the right. The domain of f is the set of all x such that $-4<x<0$.

Given that $f(-2)=0$, find the solution $f(x)$.

13. Mr. Bean's favorite addiction (rhymes with Poctor Depper) is put into a cylindrical container with radius 3 inches, as shown in the figure above. Let h be the depth of the soda in the container, measured in inches, where h is a function of time t, measured in minutes. The volume V of soda in the container is changing at the rate of $-\frac{\pi}{2} \sqrt{h}$ cubic inches per minute throughout the morning. Given that $h=9$ at the start of $1^{\text {st }}$ period $(t=0)$, solve the differential equation $\frac{d h}{d t}$ for h as a function of t. (The volume V of a cylinder with radius r and height h is $V=\pi r^{2} h$.)

14. The rate at which a baby koala bear gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bear is first weighed, its weight is 2 pounds. If $B(t)$ is the weight of the bear, in pounds, at time t days after it is first weighed, then $\frac{d B}{d t}=\frac{1}{4}(20-B)$. Find $y=B(t)$, the particular solution to the differential equation.

