For each differential equation, find the solution that passes through the given initial condition.

1. $\frac{d y}{d x}=y \cos x$ and $y=4$ when $x=0$

$$
\begin{aligned}
\frac{1}{y} d y & =\cos x d x \\
\ln |y| & =\sin x+C_{1} \\
|y| & =e^{\sin x+c_{1}} \\
y & =C_{2} e^{\sin x} \\
4 & =c_{2} e^{0} \\
4 & =C_{2} \\
y & =4 e^{\sin x}
\end{aligned}
$$

3. $\frac{d y}{d x}=y \sin x$ if $y\left(\frac{\pi}{2}\right)=2$
$\frac{1}{y} d y=\sin x d x$
$\ln |y|=-\cos x+C_{i}$
$|y|= \pm e^{-\cos x+c_{1}}$
$y=c_{2} e^{-\cos x}$
$2=c_{2} e^{0}$
$2=C_{2}$

$$
\begin{aligned}
& \text { 2. } \frac{d y}{d x}=\frac{6 x^{2}}{y} \text { if } y(0)=-2 \\
& y d y=6 x^{2} d x \\
& \frac{y^{2}}{2}=2 x^{3}+C \\
& 2=C \\
& \frac{y^{2}}{2}=2 x^{3}+2 \\
& y^{2}=4 x^{3}+4 \\
& y= \pm \sqrt{4 x^{3}+4} \quad y \text { is negative } \\
& y=-\sqrt{4 x^{3}+4}
\end{aligned}
$$

$$
\begin{aligned}
& -\ln |8-y|=\frac{1}{5} x+C_{1} \\
& \ln |8-y|=-\frac{1}{5} x+c_{1} \\
& |8-y|=e^{-\frac{-3 x}{5} x+c_{1}} \\
& 8-y=c_{2} e^{-\frac{1}{5} x} \\
& y=c_{2} e^{-\frac{1}{5} x}+8 \\
& y=-2 e^{-\frac{1}{5} x}+8
\end{aligned}
$$

7. Find the particular solution to $\frac{d y}{d x}=e^{x-y}$ when $f(0)=2$. Sketch the graph of this particular solution on the slope field provided.

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x} \\
& e^{y} \\
& e^{4} d y=e^{x} d x \\
& e^{y}=e^{x}+c \\
& e^{2}=e^{+}+c \\
& e^{2}-1=c
\end{aligned} \quad y=\ln \left(e^{x}+e^{2}-1\right)
$$

8. Find the particular solution to $\frac{d y}{d x}=x y^{2}$ if $y=1$ when $x=0$. Sketch the graph of this particular solution on the slope field provided.

$$
\begin{aligned}
& y^{-2} d y=x d x \\
& -\frac{1}{y}=\frac{1}{2} x^{2}+c \\
& -1=c \\
& -\frac{1}{y}=\frac{1}{2} x^{2}-1
\end{aligned} \quad y=\frac{1}{1-\frac{x}{2}}
$$

7.7 Separation of Variables (Particular Solutions)
9. Consider the differential equation $\frac{d y}{d x}=e^{y}(4 x-1)$. Let $y=f(x)$ be the particular solution to the differential equation that passes through $(2,0)$.
(a) Write an equation for the line tangent to the graph of f at the point $(2,0)$. Use the tangent line to approximate $f(2.2)$.

$$
\begin{aligned}
& d y=e^{b}(8-1)=7 \\
& y=7(x-2)
\end{aligned}
$$

$$
\begin{aligned}
& y=7(2.2-2) \\
& y=7(0.2) \\
& y=1.4
\end{aligned}
$$

(b) Find $y=f(x)$, the particular solution to the differential equation that passes through $(2,0)$.

$$
\begin{array}{ll}
e^{-y} d y=(4 x-1) d x \\
-e^{-y}=2 x^{2}-x+c \\
-e^{0}=8-2+c
\end{array} \quad \begin{array}{ll}
-1=6+c & -e^{-y}=2 x^{2}-x-7 \\
-7=c & e^{-y}=-2 x^{2}+x+7 \\
-y=\ln \left(-2 x^{2}+x+7\right) \\
y=-\ln \left(-2 x^{2}+x+7\right)
\end{array}
$$

10. One of Mr. Kelly's calculus students attempted to solve the differential equation $\frac{d y}{d x}=2 x y$ with initial condition $y=3$ when $x=0$. In which step, if any, does an error first appear?

Step 1: $\int \frac{1}{y} d y=\int 2 x d x$
Step 2: $\ln |y|=x^{2}+C$
Step 3: $|y|=e^{x^{2}}+C \leftarrow$ plus C Should be in the exponent.
Step 4: Since $y=3$ when $x=0,3=e^{0}+C$.
Step 5: $y=-e^{x^{2}}+2$
(A) Step 2
(B) Step 3
(C) Step 4
(D) Step 5
(E) There is no error in the solution.
11. Consider the differential equation $\frac{d y}{d x}=6-2 y$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(0)=4$.
a. Write an equation for the line tangent to the graph of $y=f(x)$ at $x=0$. Use the tangent line to approximate $f(0.6)$.

$$
\begin{aligned}
& \frac{d y}{d x}=6-2(4) \\
& \frac{d y}{d x}=-2
\end{aligned}
$$

$$
y-4=-2 x
$$

$$
\begin{gathered}
y-4=-2(0.6) \\
y=-1.2+4 \\
y=2.8
\end{gathered}
$$

b. Find the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(0,4)$. Is the graph of $y=f(x)$ concave up or concave down at the point $(0,4)$? Give a reason for your answer.

$$
\begin{aligned}
& \frac{d 3}{d x^{2}}=-2 \frac{10}{2 x} \\
& \frac{d x}{d x}=-2(6-2 y)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{(}(0,4)} & =-2(6-2(4)) \\
& =-2(-2) \\
& =4
\end{aligned}
$$

Concave up because

$$
\begin{aligned}
& \frac{d y}{d x^{2}}>0 \text { at }(0,4) \\
& \hline
\end{aligned}
$$

c. Find $y=f(x)$, the particular solution to the differential equation with the initial condition $f(0)=4$.

$$
\begin{aligned}
& \frac{1}{6-2 y} d y=d x \\
& -\frac{1}{2} \ln |6-2 y|=x+C_{1} \\
& \ln |6-2 y|=-2 x+C_{2} \\
& \rightarrow|6-2 y|=C_{3} e^{-2 x} \quad|6-2 y|=2 e^{-2 x} \\
& |(-2 x)|=C_{3} e^{0} \quad 6-2 y=2 e^{-2 x} \\
& 2=C \quad-2 y=2 e^{-2 x}-6 \\
& \text { y } \text { in }_{\text {po }} \quad y^{3}=e^{-2 x}+3
\end{aligned}
$$

d. For the particular solution $y=f(x)$ found in part c , find $\lim _{x \rightarrow \infty} f(x)$.

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{e^{x}}+3\right)=0+3=3
$$

12. The graph of the derivative of f, f^{\prime}, is shown to the right. The domain of f is the set of all x such that $-4<x<0$.

Given that $f(-2)=0$, find the solution $f(x)$.
If $-4<x<-2, f^{\prime}(x)=-x-3$

$$
f(x)=\left\{\begin{array}{ll}
-\frac{1}{2} x^{2}-3 x-4, & -4<x \leqslant-2 \\
\frac{1}{2} x^{2}+x, & -2<x<0
\end{array} \quad \begin{array}{c}
0=\frac{1}{2}(4)+(-2)+C \\
0=C \\
\begin{array}{l}
\text { The function exists at } x=-2, \text { so there } \\
\text { should be an "or equal to" on one of } \\
\text { the inequalities. }
\end{array} \\
\hline
\end{array}\right.
$$

13. Mr. Bean's favorite addiction (rhymes with

Poctor Pepper) is put into a cylindrical container with radius 3 inches, as shown in the figure above. Let h be the depth of the soda in the container, measured in inches, where h is a function of time t, measured in minutes. The volume V of soda in the container is changing at the rate of $-\frac{\pi}{2} \sqrt{h}$ cubic inches per minute throughout the morning. Given that $h=9$ at the start of $1^{\text {st }}$ period $(t=0)$, solve the differential equation $\frac{d h}{d t}$ for h as a function of t. (The volume V of a cylinder with radius r and height h is $V=\pi r^{2} h$.)

$$
\begin{aligned}
& \frac{d v}{d t}=-\frac{\pi}{2} \sqrt{h} \\
& v=9 \pi h \\
& d=9 \pi d h \\
& -\frac{\pi}{2} \sqrt{h}=9 \pi d h \\
& -\frac{1}{18} \sqrt{h}=\frac{d h}{d t}
\end{aligned} \quad \begin{aligned}
& -\frac{1}{1 / 2} d t=h^{-\frac{1}{2}} d h \\
& -\frac{1}{18} t=2 \sqrt{h}+c \\
& -\frac{18}{d t}(0)=2 \sqrt{9}+c \\
& -6=c \\
& -\frac{1}{18} t=2 \sqrt{h}-6
\end{aligned} \quad \begin{aligned}
& 6-\frac{1}{17} t=2 \sqrt{h} \\
& 3-\frac{1}{36} t=\sqrt{h} \\
& h=\left(3-\frac{1}{36} t\right)^{2}
\end{aligned}
$$

14. The rate at which a baby koala bear gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bear is first weighed, its weight is 2 pounds. If $B(t)$ is the weight of the bear, in pounds, at time t days after it is first weighed, then $\frac{d B}{d t}=\frac{1}{4}(20-B)$. Find $y=B(t)$, the

