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Calculus

| For each differential equation, find the solution that passes through the given initial condition.
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7. Find the particular solution tocdi—z = e*™Y when f(0) = 2. Sketch the EEEEEEEEEEE?EEEEEE:// 2
graph of this particular solution on the slope field provided. A
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8. Find the particular solution to Z—z = xy? ify = 1 when x = 0. Sketch
the graph of this particular solution on the slope field provided.

=2 p

9 0l‘3=><0k>< *\\32‘%)( +
\ - - ', A

——':£X1+C ~~~~~~~~~~~~~~~~~~~~~~~~~~

J S —
S ———— —— —
[
S S

\3 24—t ———4———
NN NN NN —N———— e — — —~ ~
\ \ N~N—~—T—— /
\N~Ag+—r s/ /
-\‘ L - \ \NS~t—rr 77 /
- - )e- \ \NN~F+~// /] |
- \ VANNF T I
;_ | \\NN\N@+/ /) |
\ 1 | VAN |
—_ > | VANNE /70 |
— = )(- \ VNN 0T |
\3 P | [ A |

7.7 Separation of Variables (Particular Solutions) Test Prep

9. Consider the differential equation Z—z =eY(4x — 1). Lety = f(x) be the particular solution to the differential

equation that passes through (2,0).

(a) Write an equation for the line tangent to the graph of f at the point (2,0). Use the tangent line to
approximate f(2.2).
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(b) Find y = f(x), the particular solution to the differential equation that passes through (2,0).
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10. One of Mr. Kelly’s calculus students attempted to solve the differential equation Z—z = 2xy with initial
condition y = 3 when x = 0. In which step, if any, does an error first appear?

Step 1: f%dy = [2xdx
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Step 2:Inly| =x*+C  \\ ) ne Cx (\B\'\t
Step3: |yl =e*" +Ce—  plwd C 5\'\°"‘M be t Fo )
Step 4: Since y = 3 whenx = 0,3 =e® + C.

Step 5:y = —e** 42

(A) Step2 (B) Step3 (C) Step4 (D) Step5 (E) There is no
error in the solution.

11. Consider the differential equation % = 6 — 2y. Lety = f(x) be the particular solution to the differential
equation with the initial condition f(0) = 4.

a. Write an equation for the line tangent to the graph of y = f(x) at x = 0. Use the tangent line to
approximate f(0.6). \3 ~L\ ~ —l)( \3~L\ :—‘l(o.é)
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b. Find the value of % at the point (0, 4). Is the graph of y = f(x) concave up or concave down at the point
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c. Findy = f(x), the particular solution to the differential equation with the initial condition f(0) = 4.
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d. For the particular solution y = f(x) found in part c, find lim f(x).
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12. The graph of the derivative of f, f', is shown to the right. The ‘ y
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domain of f is the set of all x such that —4 < x < 0.

Given that f(—2) = 0, find the solution f(x). f'&) ‘
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The function exists at x = —2, so there
)5_x +¥, -L<X<O \ should be an “or equal to” on one of

the inequalities.

13. Mr. Bean’s favorite addiction (rthymes with -
Poctor Depper) is put into a cylindrical container with radius 3 inches, as shown in _3in N
the figure above. Let h be the depth of the soda in the container, measured in \/
inches, where h is a function of time t, measured in minutes. The volume V of soda
in the container is changing at the rate of — %\/ﬁ cubic inches per minute throughout /—\
the morning. Given that h = 9 at the start of 1* period (¢t = 0), solve the differential v T
equation % for h as a function of t. (The volume V of a cylinder with radius r and hin
height h is V = nr?h.) l
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14. The rate at which a baby koala bear gains weight is proportional to the difference between its adult weight and
its current weight. At time t = 0, when the bear is first weighed, 1ts weight is 2 pounds. If B(t) is the weight
of the bear, in pounds, at time t days after it is first weighed, then —=- (20 B). Find y = B(t), the f
particular solution to the differential equation. {'
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