7.7 Separation of Variables (Particular Solutions)
Calculus
For each differential equation, find the solution that passes through the given initial condition.
1.
$$\frac{dy}{dx} = y \cos x$$
 and $y = 4$ when $x = 0$
 $\frac{1}{y} dy = \cos_{x} dx$
 $\left[\ln|y| = 5 \sin x + C_{1} \\ \frac{1}{y} = \zeta_{2} e^{5inx} \\ \frac{1}{y} = \frac{1}{y} e^{5inx$

7. Find the particular solution to $\frac{dy}{dx} = e^{x-y}$ when f(0) = 2. Sketch the graph of this particular solution on the slope field provided.

8. Find the particular solution to $\frac{dy}{dx} = xy^2$ if y = 1 when x = 0. Sketch the graph of this particular solution on the slope field provided.

7.7 Separation of Variables (Particular Solutions)

Test Prep

- 9. Consider the differential equation $\frac{dy}{dx} = e^y(4x 1)$. Let y = f(x) be the particular solution to the differential equation that passes through (2,0).
 - (a) Write an equation for the line tangent to the graph of f at the point (2,0). Use the tangent line to approximate f(2.2).

$$\begin{aligned} & \mathcal{J} = \mathcal{F}(x, \lambda - \lambda) \\ & \mathcal{J} = \mathcal{J}(x, \lambda - \lambda) \\ & \mathcal{J} = \mathcal{J}($$

10. One of Mr. Kelly's calculus students attempted to solve the differential equation $\frac{dy}{dx} = 2xy$ with initial condition y = 3 when x = 0. In which step, if any, does an error first appear?

Step 1:
$$\int \frac{1}{y} dy = \int 2x \, dx$$

Step 2: $\ln|y| = x^2 + C$
Step 3: $|y| = e^{x^2} + C - plus$ C Should be in the exponent.
Step 4: Since $y = 3$ when $x = 0, 3 = e^0 + C$.
Step 5: $y = -e^{x^2} + 2$
(A) Step 2 (B) Step 3 (C) Step 4 (D) Step 5 (E) There is no error in the solution.

- 11. Consider the differential equation $\frac{dy}{dx} = 6 2y$. Let y = f(x) be the particular solution to the differential equation with the initial condition f(0) = 4.
 - a. Write an equation for the line tangent to the graph of y = f(x) at x = 0. Use the tangent line to approximate f(0.6).

b. Find the value of $\frac{d^2y}{dx^2}$ at the point (0, 4). Is the graph of y = f(x) concave up or concave down at the point (0, 4)? Give a reason for your answer.

c. Find y = f(x), the particular solution to the differential equation with the initial condition f(0) = 4.

$$\frac{1}{6-2y} dy = dx$$

$$-\frac{1}{6-2y} dy = dx$$

$$|6-2y| = C_3 e^{-2x} |6-2y| = 2e^{-2x}$$

$$|6-2y| = 2e^{-2x}$$

$$|6-2y| = 2e^{-2x}$$

$$|6-2y| = 2e^{-2x}$$

$$|6-2y| = 2e^{-2x}$$

$$2=(2x-2y) = 2e^{-2x}$$

$$2=(2x-2y) = 2e^{-2x}$$

$$2=(2x-2y) = 2e^{-2x}$$

$$y = 2e^{-2x}$$

d. For the particular solution y = f(x) found in part c, find $\lim_{x \to \infty} f(x)$.

 $\lim_{x \to \infty} \left(\frac{1}{e^{2x}} + 3 \right) = 0 + 3 = 3$

14. The rate at which a baby koala bear gains weight is proportional to the difference between its adult weight and its current weight. At time t = 0, when the bear is first weighed, its weight is 2 pounds. If B(t) is the weight of the bear, in pounds, at time t days after it is first weighed, then $\frac{dB}{dt} = \frac{1}{4}(20 - B)$. Find y = B(t), the particular solution to the differential equation

$$particular solution to the differential equation.
$$|2o - B| = C_{3}e^{-4t} |2o - B| = |8e^{-4t} |2o - B| |2o - B| |2o - B| = |8e^{-4t} |2o - B| |2o -$$$$