7.8 Exponential Models with Differential Equations

Calculus	•			CA #1					
CalculusName:Find the particular solution $y = f(t)$ for each differential equation.									
1. $\frac{dy}{dt} = 106y$ and $y = -15$ when $x = 0$, then $y =$	2. $\frac{dy}{dx} = -0.3y$ and $y = 41$ when $x = 0$, then $y =$		3. $\frac{dy}{dt} = 51y$ and $y = -$ when $x = 0$, then y						
For each problem, use your understanding of exponential models and differential equations.									
4. A dose of 75 milligrams of a dra administered to a patient. The a drug, in milligrams, in the perso bloodstream at time t, in hours, A(t). The rate at which the dru bloodstream can be modeled by equation $\frac{dA}{dt} = -0.09A$. Write a for $A(t)$.	amount of the on's , is given by ug leaves the v the differential	$\frac{dy}{dt} = ky$, when measured in y	y grows according to the ere k is a constant and t i years. If the population d , then what is the value o	s loubles					
6. A population y grows according $\frac{dy}{dt} = ky$, where k is a constant measured in years. If the popule every 28 years, then what is the	and t is lation doubles	people that an a rate proport are infected a infected when and 6,000 per many people	ain epidemic, the number re infected at any time ind tional to the number of per- tional to the number of per- net to the number of per- tional to the number of	creases at eople that ple are covered, ater, how					

59 people	8'9ī .7		$7420.0 \approx \lambda$.8	£ ≈ 0.173		
$4. y = 75e^{-0.09t}$		3. $y = -0.5e^{51t}$	$\Sigma. y = 41e^{-0.3t}$		1. $y = -15e^{106t}$	

Answers to 7.8 CA #1