Find the particular solution $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{t})$ for each differential equation.

1. $\frac{d y}{d t}=106 y$ and $y=-15$
when $x=0$, then $y=$
2. $\frac{d y}{d x}=-0.3 y$ and $y=41$
when $x=0$, then $y=$
3. $\frac{d y}{d t}=51 y$ and $y=-0.5$ when $x=0$, then $y=$

For each problem, use your understanding of exponential models and differential equations.
4. A dose of 75 milligrams of a drug is administered to a patient. The amount of the drug, in milligrams, in the person's bloodstream at time t, in hours, is given by $A(t)$. The rate at which the drug leaves the bloodstream can be modeled by the differential equation $\frac{d A}{d t}=-0.09 A$. Write an expression for $A(t)$.
5. A population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 4 years, then what is the value of k ?
6. A population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 28 years, then what is the value of k ?
7. During a certain epidemic, the number of people that are infected at any time increases at a rate proportional to the number of people that are infected at that time. If 5,000 people are infected when the epidemic is first discovered, and 6,000 people are infected 3 days later, how many people are infected 20 days after the epidemic is first discovered?

