7.8 Exponential Models with Differential Equations

Find the particular solution $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{t})$ for each differential equation.

1. $\frac{d y}{d t}=0.9 y$ and $y=6$ when
$x=0$, then $y=$
2. $\frac{d y}{d x}=-2 y$ and $y=51$ when $x=0$, then $y=$
3. $\frac{d y}{d t}=10 y$ and $y=-0.7$ when $x=0$, then $y=$

For each problem, use your understanding of exponential models and differential equations.

4. A population y grows according to the equation 5. A population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 19 years, then what is the value of k ?
$\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 3 years, then what is the value of k ?
5. During a certain epidemic, the number of people that are infected at any time increases at a rate proportional to the number of people that are infected at that time. If 700 people are infected when the epidemic is first discovered, and 900 people are infected 2 days later, how many people are infected 5 days after the epidemic is first discovered?

э¢doəd ZLE'し 9	LEZ $0 \approx \geqslant \bigcirc$	$9800 \approx y \quad t$
${ }_{101}{ }^{2} L \cdot 0-=\kappa \cdot \varepsilon$		$36029=\kappa \cdot I$

