7.8 Exponential Wodels with	Differential Eq	uations		CA #2	
Calculus	Calculus Name:			CA #2	
Find the particular solution $y = f(t)$ for each differential equation.					
1. $\frac{dy}{dt} = 0.9y$ and $y = 6$ when	2. $\frac{dy}{dx} = -2y$ and $y = 51$ when		3. $\frac{dy}{dt} = 10y$ and $y =$		
x = 0, then $y =$	x = 0, then $y =$		when $x = 0$, then	y =	
For each problem, use your unders	tanding of expone	ntial models and di	ifferential equations.		
4. A population y grows accordin	5. A population <i>y</i> grows according to the equation				
$\frac{dy}{dt} = ky$, where k is a constant and t is		$\frac{dy}{dt} = ky$, where k is a constant and t is			
measured in years. If the population doubles		measured in years. If the population doubles			
every 19 years, then what is the value of k ?		every 3 years, then what is the value of k ?			

6. During a certain epidemic, the number of people that are infected at any time increases at a rate proportional to the number of people that are infected at that time. If 700 people are infected when the epidemic is first discovered, and 900 people are infected 2 days later, how many people are infected 5 days after the epidemic is first discovered?

6. 1,312 people	2. <i>k</i> ≈ 0.231	$t. \ k \approx 0.036$
β . $\gamma = -0.7e^{10t}$	$\Sigma. y = 51e^{-2t}$	$y = 6e^{0.96}$
	Answers to 7.6 #2	