7.8 Exponential Models with Differential Equations Calculus
Find the particular solution $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{t})$ for each differential equation.

1. $\frac{d y}{d t}=8 y$ and $y=-2$	2. $\frac{d y}{d t}=-4 y$ and $y=10$		
when $t=0$		\quad	3. $\frac{d y}{d t}=16 y$ and $y=5$
:---			
when $t=0$	\quad	4. $\frac{d y}{d t}=-7 y$ and $y=-4$	
:---			
when $t=0$			

For each problem, use your understanding of exponential models and differential equations.
5. During a certain epidemic, the number of people that are infected at any time increases at a rate proportional to the number of people that are infected at that time. If 500 people are infected when the epidemic is first discovered, and 800 people are infected 5 days later, how many people are infected 10 days after the epidemic is first discovered?

Let $P=\#$ of people infected

$$
\begin{aligned}
P & =500 e^{k t} \\
800 & =500 e^{k(5)} \\
\% / 5 & =e^{5 k} \quad P=500 e^{.004(10)} \\
\ln (\% / 5) & =5 k \quad P=1279.991 \\
0.094 & \approx k \quad \text { About } 1,280 \text { people }
\end{aligned}
$$

A population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 11 years, then what is the value of k ?

$$
\begin{gathered}
y=c e^{k t} \\
2=e^{k(11)} \\
\ln (2)=11 k
\end{gathered}
$$

$$
K \approx 0.063
$$

7. A certain animal weighs 30 grams at birth. During the first 4 weeks after the animal's birth, its weight in grams is given by the function W that satisfies the differential equation $\frac{d W}{d t}=0.01 \mathrm{~W}$, where t is measured in days. What is an expression for $W(t)$?

$$
w(t)=30 e^{0.01 t}
$$

9. A population of fruit flies is increasing at an exponential rate. If on the $3^{\text {rd }}$ day there were 400 fruit flies, and the $7^{\text {th }}$ day there were 600 fruit flies, approximately how many flies were in the original population (day 0)?

$$
P=P_{0} e^{k t}
$$

$$
400=P_{0} e^{3 k} \quad 600=P_{0} e^{7 k}
$$

$$
\frac{400}{e^{3 k}}=P_{0}
$$

$$
\frac{600}{e^{7 K}}=P_{0}
$$

$$
\frac{400}{e^{3 k}}=\frac{600}{e^{7 K}}
$$

$$
e^{4 k}=\frac{3}{2}
$$

$4 k=\ln \left(\frac{3}{2}\right)$
11. A radioactive substance has a rate of decay that can be modeled by the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the halflife of the radioactive substance is 300 years, then what is the value of k ?

$$
k \approx-0.0023
$$

$$
\begin{aligned}
& \frac{1}{2}=1 \cdot e^{k(300)} \\
& \ln \left(\frac{1}{2}\right)=300 \mathrm{~K}
\end{aligned}
$$

8. A population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 25 years, then what is the value of k ?

$$
\begin{aligned}
& y=c e^{k t} \\
& 2=e^{k(25)} \\
& \ln (2)=25 k \\
& k \approx 0.0277
\end{aligned}
$$

10. A peri dish contains 100 bacteria, and the number N of bacteria is increasing according to the equation $\frac{d N}{d t}=k N$, where k is a constant and t is measured in hours. At time $t=3$, there are 181 bacteria. Based on this information, what is the doubling time for the bacteria?

$$
\begin{aligned}
& N=N_{0} e^{k t} \\
& 181=100 e^{3 k} \\
& 1.81=e^{3 k} \\
& \ln (1.81)=3 k \\
& k \approx 0.1977
\end{aligned} \quad \begin{gathered}
200=100 e^{0.1477 t} \\
2=e^{0.0977 t}
\end{gathered} \quad \begin{gathered}
\ln (2)=0.1977 t \\
t \approx 3.506 \\
\text { has }
\end{gathered}
$$

12. A dose of 100 milligrams of a drug is administered to a patient. The amount of the drug, in milligrams, in the person's bloodstream at time t, in hours, is given by $A(t)$. The rate at which the drug leaves the bloodstream can be modeled by the differential equation $\frac{d A}{d t}=-0.5 A$. Write an expression for $A(t)$.

$$
A(t)=100 e^{-0.5 t}
$$

7.8 Exponential Models with Differential Equations
13. Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles in five hours, in how many hours will the number of bacteria triple?

$$
\begin{aligned}
& 2=e^{k(5)} \\
& \ln (2)=5 k \\
& \frac{\ln 2}{5}=k
\end{aligned}
$$

(A) $\ln \left(\frac{15}{2}\right)$
(B) $\ln \left(\frac{3^{5}}{2}\right)$
(C) $2 \ln (3) \ln 2$
(D) $\frac{\ln 2}{5}$
(E) $\frac{5 \ln 3}{\ln 2}$
14. A group of tiny organisms (measured in grams) is shrinking a rate modeled by $\frac{d M}{d t}=-0.7 M$, where the time t is measured in hours. The size of a second group of organisms decreases at a constant rate of 2 grams per hour according to the linear model $\frac{d N}{d t}=-2$. If at time $t=0$, the first group has size $M(0)=4$ and the second colony has size $N(0)=6$, at what time will both groups of organisms be the same size?

(A) -0.459
(B) 0.312
(C) 1.292
(D) 2.697

