7.9 Logistic Models

Calculus

1. A populations rate of growth is modeled by the logistic differential equation $\frac{dP}{dt} = \frac{1}{400}P(100 - P)$, where t is in days and P(0) = 10. What is the greatest rate of change for this population?

2. Using the logistic differential equation $\frac{dP}{dt} = \frac{1}{3}P - \frac{1}{120}P^2$, what is $\lim_{t \to \infty} P(t)$?

3. A rate of change $\frac{dP}{dt}$ of a population is modeled by a logistic differential equation. If $\lim_{t\to\infty} P(t) = 100$ and the rate of change of the population is 5 when the population size is 20, which of the following differential equations describe the situation?

A.
$$\frac{dP}{dt} = 5P\left(1 - \frac{P}{20}\right)$$

B.
$$\frac{dP}{dt} = 20P \left(1 - \frac{P}{100} \right)$$

C.
$$\frac{dP}{dt} = \frac{5}{16} P \left(1 - \frac{P}{100} \right)$$

D.
$$\frac{dP}{dt} = \frac{16}{5} P \left(1 - \frac{P}{100} \right)$$

4. A rate of change for a population is modeled by the differential equation $\frac{dP}{dt} = 0.3P(66 - P)$. What is the population when the rate of change is the greatest?

5. Which of the following is a logistic differential equation?

$$A. \frac{dP}{dt} = 3t(1-t)$$

$$B. \frac{dP}{dt} = 3P(1-t)$$

$$C. \frac{dP}{dt} = \frac{1}{3}P\left(1 - \frac{t}{50}\right)$$

D.
$$\frac{dP}{dt} = \frac{1}{3}P\left(1 - \frac{P}{50}\right)$$

Answers to 7	7.9 CA #2
--------------	-----------

1. $\frac{25}{4}$ per day 2	2. 40	3. C	4. 33	5. D
-----------------------------	-------	------	-------	------