8.10 Disc Method: Revolve Around Other Axes

CA #1

Setup the integral that gives the volume of the solid formed from revolving the bounded region about the given line. Set up the integral, but do not evaluate.

- 1. $y = 2x^2$, x = 2, y = 0 about the line x = 2.
- 2. $y = x^2$, x = -2, y = 1 and revolve about the line x = -2.

- 3. $y = x^2$ and y = 4 and revolve about the line y = 4.
- 4. y = x, y = 0, x = 6 and revolve about the line x = 6.

- 5. y = x 1, y = 3 and x = 6 and revolve about the line y = 3.
- 6. $y = \sqrt{x}$, x = 0, x = 9, y = -2 about the line y = -2.

$xb^{2}(z+\overline{x}\sqrt{\pi}^{9})\pi^{6}$	$xb^{2}(h-x)\pi^{6}_{p}$. δ	$\chi b^{2}(\chi-\delta)\pi^{6}_{0}$. 4
$xb^{2}(^{2}x-4)\pi_{s-1}^{2}$.	$\lambda h^{2} \left(\overline{V}_{V} + \Delta - \right) \pi^{4} \int_{\Gamma} d\gamma$	$\chi b^{2} \left(\frac{\chi}{z} \right) - 2 \right) \pi_{0}^{8} \chi . 1$