Setup the integral that gives the volume of the solid formed from revolving the bounded region about the given line. Set up the integral, but do not evaluate.

1. $y=2-x^{2}$ and $y=1$ revolved about the line $y=1$.

$$
\begin{aligned}
2-x^{2} & =1 \\
x^{2} & =1
\end{aligned}
$$

2. $\begin{aligned} y & =\sqrt{x} \\ x & =4 .\end{aligned}$

$$
\begin{aligned}
& \int_{-1}^{1} \pi\left(2-x^{x}-1\right)^{2} d x \\
& \pi \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x
\end{aligned}
$$

3. $y=-x-2, y=4, x=-1$ and revolve about the line $x=-1$.

$$
x=-y-2
$$

$$
\pi \int_{-1}^{4}(-y-1)^{2} d y
$$

4. $y=x^{3}, x=0$, and $y=8$ and revolve about the line $y=8$.

$$
\int_{0}^{2} \pi\left(4-y^{2}\right)^{2} d y
$$

$$
\int_{-1}^{4} \pi(-y-2-(-1))^{2} d y
$$

5. First quadrant, $y=\sin x, y=0$ and $x=\frac{\pi}{2}$ and revolve about the line $x=\frac{\pi}{2}$.

$$
x=\sin ^{-1}(y)
$$

7. $y=x^{2}-3$ and $y=-2$ and revolve about the line

$$
\int_{0}^{1} \pi\left(\frac{y}{2}-\sin ^{-1}(y)\right)^{2} d y
$$ $y=-2$.

$$
\int_{-1}^{1} \pi\left(x^{2}-3-(-2)\right)^{2} d x^{6}
$$

$$
\pi \int_{-1}^{1}\left(x^{2}-1\right)^{2} d x
$$

$$
\begin{aligned}
& \int_{-1}^{1} \pi\left(-3-\left(-x^{2}-2\right)\right)^{2} d x \\
& \pi \int_{-1}^{1}\left(x^{2}-1\right)^{2} d x
\end{aligned}
$$

$y=-x^{2}-2$ and $y=-3$ and revolve about the line $y=-3$.

$$
\begin{aligned}
-x^{2}-2 & =-3 \\
-x^{2} & =-1 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

8. $x=-y^{2}, x=-4$ and revolve about the line $x=-4$.

$$
\int_{-2}^{2} \pi\left(-4-(y)^{2}\right)^{2} d y
$$

$$
\pi \int_{-2}^{2}\left(y^{2}-4\right)^{2} d y
$$

