8.12 Washer Method: Revolve Around Other Axes

A region S is bounded by the graphs of $y=x^{2}$ and $y=2 x$.

1. Sketch the graph and find the area of region S.
2. Let S be the base of a solid with cross sections perpendicular to the x-axis that form a semicircle. Find the volume of this solid. [Use a calculator after you set up the integral.]
3. Let S be the base of a solid with cross sections perpendicular to the y-axis that form isosceles right triangles. Find the volume of this solid. [Use a calculator after you set up the integral.]

Write the equation for the "big radius" and the "little radius" for the solid of revolution when revolving S around the given line. Then setup the integral to find the volume of the solid formed. DO NOT EVALUATE.
4. The line $y=4$.
$R=$
$r=$
$V=$
5. The line $\boldsymbol{x}=2$.
$R=$
$r=$
$V=$
6. The line $x=-1$.
$R=$
$r=$
$V=$

$\kappa p\left[_{Z}\left(\mathrm{I}+\kappa_{\frac{\Sigma}{Z}}^{\mathrm{L}}\right)-_{z}(\mathrm{I}+\Lambda \Upsilon)\right]_{\downarrow}^{0} \int u=\Lambda \quad 9$	
$x p\left[{ }_{z}(x z-t)-{ }_{z}\left({ }_{z} x-t\right)\right]_{z}^{0} \int u=\Lambda \quad t$	
L88LTO $=x p{ }_{z}\left(\frac{z}{z^{x-x z}}\right)_{z}^{0} \int \frac{z}{u}=\Lambda \quad \tau$	$\varepsilon \varepsilon \varepsilon^{\prime} I=x p\left({ }_{z} x-x z\right){ }_{z}^{0} \int=V^{\prime} \tau$

