Calculus

Write your questions and thoughts here!

8.12 Washer Method: Revolve Around Other Axes

Volume of a Solid of Revolution (washers)

$$
V=\pi \int_{a}^{b}
$$

1. Find the volume if the region enclosed by $y=\sqrt{x}$, and $y=x^{2}$ is rotated about the line $y=2$.

2. Find the volume if the region enclosed by $y=x^{2}+1$ and $y=2 x+1$ is rotated about the line $x=-1$.

This lesson will have a review of several topics from Unit 8, so you need to be able to distinguish what strategy to apply for each problem!

1. A region S is bounded by the graphs of $y=x, x=0$, and $y=3$.
a. Sketch the graph and find the area of region S.
b. Let S be the base of a solid with cross sections perpendicular to the x-axis that form a square. Find the volume of this solid. [Use a calculator after you set up the integral.]
c. Let S be the base of a solid with cross sections perpendicular to the y-axis that form a semi-circle. Find the volume of this solid. [Use a calculator after you set up the integral.]

Write the equation for the "big radius" and the "little radius" for the solid of revolution when revolving S around the given line. Then setup the integral to find the volume of the solid formed. DO NOT EVALUATE.

d. The line $x=3$.	e. The line $y=-1$.	f. The line $x=-1$.
$R=$	$R=$	$R=$
$r=$	$V=$	$r=$
$V=$	$V=$	

2. A region T is bounded by the graphs of $y=x^{2}$ and $y=4 x-x^{2}$.
a. Sketch the graph and find the area of region T.
b. Let T be the base of a solid with cross sections perpendicular to the x-axis that form a semicircle. Find the volume of this solid. [Use a calculator after you set up the integral.]

Write the equation for the "big radius" and the "little radius" for the solid of revolution when revolving S around the given line. Then setup the integral to find the volume of the solid formed. DO NOT EVALUATE.
c. The line $y=6$.
d. The line $y=-3$.
$R=$
$r=$
$V=$

$$
\begin{aligned}
& R= \\
& r= \\
& V=
\end{aligned}
$$

3. A region D is bounded by the graphs of $y=(x-3)^{2}-5$ and $y=-1$.
a. Sketch the graph and find the area of region D.
b. Let D be the base of a solid with cross sections perpendicular to the x-axis that form a rectangle with a height 3 times the width. Find the volume of this solid. [Use a calculator after you set up the integral.]
c. Let D be the base of a solid with cross sections perpendicular to the y-axis that form an isosceles right triangle. Find the volume of this solid. [Use a calculator after you set up the integral.]

Write the equation for the "big radius" and the "little radius" for the solid of revolution when revolving D around the given line. Then setup the integral to find the volume of the solid formed. DO NOT EVALUATE.
d. The line $y=9$.
$R=$
$r=$
$V=$

e. The line $x=-2$.	f. The line $x=5$.
$R=$	$R=$
$r=$	$r=$
$V=$	$V=$

