1. Find an equation for the length of the curve $y=\cot 3 x$ from $x=\frac{\pi}{7}$ to $x=\frac{\pi}{5}$. Do Not Evaluate.
2. No Calculator. Suppose $F(x)=\int_{0}^{x} \sqrt{3-4 \cos ^{2} t} d t$. What is the length of the arc along the curve $y=F(x)$ for $0 \leq x \leq \frac{\pi}{3}$?
3. Set up an integral that will give the length of the curve from $x=1$ to $x=4$ for $y=\ln \frac{2}{x}$. Do Not Evaluate.
4. No Calculator. Let f be a function with derivative given by $f^{\prime}(x)=\sqrt{x^{2}+6 x+8}$. Find the length of the graph of $y=f(x)$ from $x=0$ to $x=5$.
5. Let R be the region bounded by the graphs of $f(x)=x^{2}+1$ and $g(x)=-x^{2}+5$. Write an expression including one or more integrals that gives the length of the region R. Do Not Evaluate.

	$\frac{z}{s s} \cdot t$	$x p \frac{z^{x}}{\mathrm{~L}}+\mathrm{L} \int_{t}^{\mathrm{t}} \int \cdot \varepsilon$	I ${ }^{\text {r }}$	$x p x_{\varepsilon_{\downarrow}} \operatorname{sos} 6+\mathrm{I} \int_{\frac{s}{\mu}}^{\frac{L}{\mu}} \int^{\frac{L}{u}} \cdot \mathrm{I}$

