Recall:

Intermediate Value Theorem:
Average Rate of Change:

$$
\frac{f(b)-f(a)}{b-a}
$$

Mean Value Theorem (MVT):

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Average Value of a Function: The average value of a function on the interval $[a, b]$

1. Find the average value of $f(x)=6-x^{2}$ on $[-1,3]$.

When does the function assume this value?

Comparing average rate of change and average value of a function.

Set up the equation for each question and use a calculator to solve it.

2. $h(t)=-16 t^{2}+41 t+10 . h$ is height (feet) and t is time (seconds).
a. What is the average height during the first 3 seconds?
b. What is the average velocity during the first 3 seconds?
3. $r(x)=2 \sin x-1$, where r is the rate at which Mr. Brust's waistline is changing (inches per month) and x is time (months).
a. What is the average rate of change that Mr. Brust's waistline changes from the $10^{\text {th }}$ to the $12^{\text {th }}$ month?
b. What is the average change of this rate during the first 5 months?

8.1 Average Value of a Function

Calculus
Find the average value of each function on the given interval.

1. $f(x)=x^{2}$ on $[2,4]$
2. $f(x)=\sin x$ on $[0, \pi]$
3. $f(x)=\sqrt{x}$ on $[0,16]$
4. $f(x)=\frac{1}{x^{2}}$ on $[-4,-2]$

On the given interval, find the x-value where the function is equivalent to the average value on that interval.
5. $f(x)=2 x-2$ on $[1,4]$
6. $f(x)=-\frac{x^{2}}{2}$ on $[0,3]$
7. $f(x)=-(2 x-6)^{\frac{2}{3}}$ on $[1,3]$

Find where the instantaneous rate of change is equivalent to the average rate of change. (MVT)
9. $y=x^{2}-4 x+3$ on $[0,4]$
11. Calculator active problem. The temperature (in $\left.{ }^{\circ} \mathrm{F}\right) t$ hours after 9 AM is approximated by the function $T(t)=50+14 \sin \frac{\pi t}{12}$. Find the average temperature during the time period 9 AM to 9 PM .
12. Calculator active problem. The depth of water in Mr. Brust's hot tub can be represented by the formula $h(t)=2-\cos (t)$, where t is the time in minutes since he begins pouring in water and $h(t)$ is measured in feet. What is the average depth of the water during the first three minutes? Set up the expression and use a calculator to help solve.

8.1 Average Value of a Function

13. Calculator active problem. The temperature outside during a 12 -hour period is given by

$$
T(h)=60-5 \cos \left(\frac{\pi h}{8}\right), \quad 0 \leq h \leq 12
$$

Where $T(h)$ is measured in degrees Fahrenheit and h is measured in hours. Find the average temperature, to the nearest degree Fahrenheit, between $h=2$ and $h=9$.
14. Find the number(s) b such that the average value of $y=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal 3 . Hint: quadratic formula needed!
15. Calculator active problem. Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$
F(t)=37-6 \cos \left(\frac{t}{3}\right) \text { for } 0 \leq t \leq 20,
$$

where $F(t)$ is measured in cars per minute and t is measured in minutes.
a. What is the average value of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.
b. What is the average rate of change of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.

