## Calculus

Write your questions and thoughts here!

<u>Recall</u>:

Intermediate Value Theorem:

Average Rate of Change:  $\frac{f(b) - f(a)}{b - a}$ 

Mean Value Theorem (MVT):  $f'(c) = \frac{f(b) - f(a)}{b - a}$ 

Average Value of a Function: The average value of a function on the interval [a, b]

1. Find the average value of  $f(x) = 6 - x^2$  on [-1, 3].



When does the function assume this value?

Comparing *average rate of change* and *average value* of a function. Set up the equation for each question and use a calculator to solve it.

2.  $h(t) = -16t^2 + 41t + \overline{10}$ . *h* is height (feet) and *t* is time (seconds). a. What is the average height during the first 3 seconds?

a. what is the average height during the first 5 seconds?

- b. What is the average velocity during the first 3 seconds?
- 3.  $r(x) = 2 \sin x 1$ , where r is the rate at which Mr. Brust's waistline is changing (inches per month) and x is time (months).
  - a. What is the average rate of change that Mr. Brust's waistline changes from the 10<sup>th</sup> to the 12<sup>th</sup> month?

b. What is the average change of this rate during the first 5 months?

## 8.1 Average Value of a Function

| Calculus                                   | Practic                                                    |
|--------------------------------------------|------------------------------------------------------------|
| Find the average value of each function on | the given interval.                                        |
| 1. $f(x) = x^2$ on [2, 4]                  | 2. $f(x) = \sin x$ on $[0, \pi]$                           |
| 3. $f(x) = \sqrt{x}$ on [0, 16]            | 4. $f(x) = \frac{1}{x^2}$ on $[-4, -2]$                    |
|                                            |                                                            |
| interval.                                  | re the function is equivalent to the average value on that |
| 5. $f(x) = 2x - 2$ on [1, 4]               | 6. $f(x) = -\frac{x^2}{2}$ on [0, 3]                       |
|                                            |                                                            |

| Find the average rate of change on the given interval.                                                                                                                            |                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. $f(x) = -(2x - 6)^{\frac{2}{3}}$ on [1, 3]                                                                                                                                     | 8. $y = x^3 - 2x^2 + 2$ on $[-1, 1]$                                                                                                                                                                      |
| 7. $f(x) = -(2x - 0)^3 \text{ on } [1, 3]$                                                                                                                                        |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
| Find where the instantaneous rate of change is equiva                                                                                                                             | lent to the average rate of change (MVT)                                                                                                                                                                  |
| 9. $y = x^2 - 4x + 3$ on $[0, 4]$                                                                                                                                                 | 10. $y = \sqrt{9 - 8x}$ on $[-2, 0]$                                                                                                                                                                      |
|                                                                                                                                                                                   | $10. y = \sqrt{y}$ $0.01 [ 2, 0]$                                                                                                                                                                         |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
| 11. <b>Calculator active problem.</b> The temperature (in °F) <i>t</i> hours after 9 AM is approximated by the function $T(t) = 50 + 14 \sin \frac{\pi t}{12}$ . Find the average | 12. Calculator active problem. The depth of water<br>in Mr. Brust's hot tub can be represented by the<br>formula $h(t) = 2 - \cos(t)$ , where t is the time in                                            |
| temperature during the time period 9 AM to 9 PM.                                                                                                                                  | minutes since he begins pouring in water and $h(t)$ is measured in feet. What is the average depth of the water during the first three minutes? Set up the expression and use a calculator to help solve. |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   |                                                                                                                                                                                                           |
|                                                                                                                                                                                   | 1                                                                                                                                                                                                         |

13. Calculator active problem. The temperature outside during a 12-hour period is given by

$$T(h) = 60 - 5\cos\left(\frac{\pi h}{8}\right), \quad 0 \le h \le 12$$

Where T(h) is measured in degrees Fahrenheit and h is measured in hours. Find the average temperature, to the nearest degree Fahrenheit, between h = 2 and h = 9.

14. Find the number(s) *b* such that the average value of  $y = 2 + 6x - 3x^2$  on the interval [0, *b*] is equal 3. *Hint*: quadratic formula needed!

15. Calculator active problem. Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$F(t) = 37 - 6\cos\left(\frac{t}{2}\right)$$
 for  $0 \le t \le 20$ ,

where F(t) is measured in cars per minute and t is measured in minutes.

- a. What is the average value of the traffic flow over the time interval  $10 \le t \le 15$ ? Indicate units of measure.
- b. What is the average rate of change of the traffic flow over the time interval  $10 \le t \le 15$ ? Indicate units of measure.