Find the average value of each function on the given interval.

1. $f(x)=x^{2}$ on $[2,4]$

$$
\begin{aligned}
& \frac{1}{4-2} \int_{2}^{4} x^{2} d x \\
& \left.\frac{1}{2}\left[\frac{x^{3}}{3}\right]\right|_{2} ^{4} \\
& \frac{1}{6}\left[4^{3}-2^{3}\right] \\
& \frac{1}{6}[64-8] \\
& \frac{1}{6}(56)=\frac{28}{3}
\end{aligned}
$$

$$
\text { 3. } f(x)=\sqrt{x} \text { on }[0,16]
$$

$$
\frac{1}{16-0} \int_{0}^{16} x^{\frac{1}{2}} d x
$$

$$
\left.\frac{1}{16}\left[\frac{2}{3} x^{3 / 2}\right]\right|_{0} ^{16}
$$

$$
\frac{1}{24}\left[4^{3}-0\right]
$$

$$
\frac{1}{6} \cdot 4^{2}
$$

2. $f(x)=\sin x$ on $[0, \pi]$
$\frac{1}{r-0} \int_{0}^{\pi} \sin x d x$

$$
\left.\frac{1}{\pi}[-\cos x]\right|_{0} ^{\pi}
$$

$$
\left.-\frac{1}{\pi}[\cos (r)-\cos k)\right]
$$

$$
-\frac{1}{\pi}\left[\begin{array}{ll}
-1 & -1
\end{array}\right] \frac{2}{\pi}
$$

$$
\text { 4. } \begin{aligned}
& f(x)=\frac{1}{x^{2}} \text { on }[-4,-2] \\
& \frac{1}{-2-4} \int_{-4}^{-2} x^{-2} d x \\
& \left.\frac{1}{2}\left[-\frac{1}{x}\right]\right|_{-4} ^{-2} \\
& -\frac{1}{2}\left[\frac{1}{-2}-\frac{1}{-4}\right] \\
& -\frac{1}{2}\left[-\frac{2}{4}+\frac{1}{4}\right]=\frac{1}{8}
\end{aligned}
$$

On the given interval, find the x-value where the function is equivalent to the average value on that interval.
5. $f(x)=2 x-2$ on $[1,4]$

$$
\begin{gathered}
\frac{1}{4-1} \int_{1}^{4}(2 x-2) d x=2 x-2 \\
\left.\frac{1}{3}\left[x^{2}-2 x\right]\right|_{1} ^{4}=2 x-2 \\
{[(16-8)-(1-2)]=6 x-6} \\
8+1=6 x-6 \\
15=6 x \\
x=\frac{5}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { 6. } f(x)=-\frac{x^{2}}{2} \text { on }[0,3] \\
& \frac{1}{3-0} \int_{0}^{3}\left(-\frac{1}{2} x^{2}\right) d x=-\frac{x^{2}}{2} \\
& -\left.\frac{1}{6}\left[\frac{x^{3}}{3}\right]\right|_{0} ^{3}=-\frac{x^{2}}{2} \\
& -\frac{1}{18}[3-0]=-\frac{x^{2}}{2} \\
& 27=9 x^{2} \\
& 3=x^{2} \\
& x=\sqrt{3}
\end{aligned}
$$

Find the average rate of change on the given interval.

$$
\begin{gathered}
\frac{f(3)-f(1))^{20}}{3-1}=\frac{-(6-5)-(x-1)^{\frac{3}{3}}}{2} \\
\frac{0+2-4)^{3}}{2} \\
\frac{\sqrt[3]{6}}{2}
\end{gathered}
$$

8. $y=x^{3}-2 x^{2}+2$ on $[-1,1]$

$$
\begin{aligned}
& \frac{(1-2+2)-(-1-2+2)}{1--1} \\
& \frac{(1)-(-1)}{2}
\end{aligned}
$$

Find where the instantaneous rate of change is equivalent to the average rate of change. (MVT)

$$
\begin{gathered}
\text { 9. } y=x^{2}-4 x+3 \text { on }[0,4] \\
\frac{(16-16+3)-(3)}{4-0}=2 x-4 \\
\frac{0}{4}=2 x-4 \\
4=2 x
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\sqrt{9-0}-\sqrt{9+16}}{0--2}=\frac{-8}{2 \sqrt{9-8 x}} \\
& \frac{3-5}{2}=\frac{-4}{\sqrt{9-8 x}} \\
& -1=\frac{-4}{\sqrt{9-8 x}} \\
& -\sqrt{9-8 x}=-4 \\
& 9-8 x=16 \\
& x=-7 / 8
\end{aligned}
$$

11. Calculator active problem. The temperature (in $\left.{ }^{\circ} \mathrm{F}\right) t$ hours after 9 AM is approximated by the function $T(t)=50+14 \sin \frac{\pi t}{12}$. Find the average temperature during the time period 9 AM to 9 PM .

$$
\frac{1}{12} \int_{0}^{12} T(t) d t
$$

$$
58.9126^{\circ} \mathrm{F}
$$

12. Calculator active problem. The depth of water in Mr. Brust's hot tub can be represented by the formula $h(t)=2-\cos (t)$, where t is the time in minutes since he begins pouring in water and $h(t)$ is measured in feet. What is the average depth of the water during the first three minutes? Set up the expression and use a calculator to help solve.
$\frac{1}{3} \int_{0}^{3} h(t) d t$

13. Calculator active problem. The temperature outside during a 12 -hour period is given by

$$
T(h)=60-5 \cos \left(\frac{\pi h}{8}\right), \quad 0 \leq h \leq 12
$$

Where $T(h)$ is measured in degrees Fahrenheit and h is measured in hours. Find the average temperature, to the nearest degree Fahrenheit, between $h=2$ and $h=9$.

$$
\frac{1}{7} \int_{2}^{9} T(n) d n \approx 61.982^{\circ} \mathrm{F}
$$

14. Find the number (s) b such that the average value of $y=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal 3 . Hint:
quadratic formula needed!

$$
\begin{gathered}
\frac{1}{b-0} \int_{0}^{b}\left(2+6 x-3 x^{2}\right) d x=3 \\
\left.\frac{1}{b}\left[2 x+3 x^{2}-x^{3}\right]\right|_{0} ^{b}=3 \\
\frac{1}{b}\left[\left(2 b+3 b^{2}-b^{3}\right)-(0)\right]=3 \\
2+3 b-b^{2}=3 \\
0=b^{2}-3 b+1
\end{gathered}
$$

