8.2 Connecting Pos, Vel, Acc with Integrals

Name:

1. A ball is thrown at the ground from the top of a tall building. The speed of the ball in meters per second is $v(t)=9.8 t+v_{0}$, where t denotes the number of seconds since the ball has been thrown and v_{0} is the initial speed of the ball (also in meters per second). If the ball travels 25 meters during the first 2 seconds after it is thrown, what was the initial speed of the ball?
2. Calculator active. A particle's velocity is given by $v(t)=t^{2}-3 t+2$, where t is measured in hours, v is measured in miles per hour, and $s(t)$ represents the particle's position.
a. If $s(2)=5$, what is the value of $s(5)$?
b. What is the net change in distance over the first 5 hours?
c. What is the total distance traveled by the particle during the first 5 miles? Show the set up of three integrals, then use a calculator.
3. Calculator active. A particle moves along the x-axis with a velocity of $v(t)=\sqrt[3]{t^{2}}-\frac{1}{t^{2}}$ measured in inches/second. At $t=1$ the position of the particle is 3 inches. What is the particle's position at $t=8$?
4. A particle moves along the y-axis with a velocity of $v(t)=\frac{1}{t}-\frac{t^{2}}{3}+2$. At $t=1$ seconds the position of the particle is 8 meters. Find the both the acceleration and position function.
5. The graph to the right shows the velocity of an object moving along the x-axis over a 5 -second period.
a) If the objected started 2 meters to the left, where is the object after 3 seconds?

c) Find the total distance traveled by the object over the 5 -second period.
6. A particle moves along the x-axis for $t \geq 0$ with an acceleration of $a(t)=24 t$ where t is time in seconds. The particle's velocity at $t=1$ is $-36 \mathrm{~cm} / \mathrm{sec}$. The position of the particle at $t=1$ is -5 cm . What is the position of the particle when the velocity is zero?

Answers to 8.2 CA \#2

1. 2.7 meters per second	2a. 18.5 2b. 14.16667 miles 2c. $\left\|\int_{0}^{1} v(t) d t\right\|+\left\|\int_{1}^{2} v(t) d t\right\|+\left\|\int_{2}^{5} v(t) d t\right\|$	$t \mid$ 3. 20.725 inches
4. Pos: $s(t)=\ln \|t\|-\frac{1}{9} t^{3}+2 t+\frac{55}{9}$ Accel: $a(t)=-\frac{1}{t^{2}}-\frac{2}{3} t$	5a. 1 meter to the left. 5 b. 1 meter to the left. 5c. 2 meters.	6. $\begin{aligned} & s(t)=4 t^{3}-48 t+39 \\ & s(2)=-27 \mathrm{~cm} \end{aligned}$

