8.2 Connecting Pos, Vel, Acc with Integrals Calculus

1. A coin is dropped from an 850 -ft building. The velocity of the coin is $v(t)=-32 t$ feet per second. Find both the position function and acceleration function.

$$
a(t)=-32
$$

$$
h(t)=-16 t^{2}+850
$$

2. A particle moves along the y-axis with an acceleration of $a(t)=2$ where t is time in seconds. The particle's velocity at $t=2$ is $5 \mathrm{~cm} / \mathrm{sec}$. The position of the function at $t=2$ is 10 cm . What is the position of the particle at

$$
\begin{aligned}
& t=6 ? \\
& V(t)=\int 2 d t \\
& V=2 t+C \\
& 5=4+C \\
& 1=C
\end{aligned}
$$

$$
x(t)=\int(2 t+1) d t
$$

$$
x(t)=t^{2}+t+4
$$

$$
x(t)=t^{2}+t+c
$$

$$
36+6+4
$$

$$
10=4+2+C
$$

$$
4=C
$$

3. A ball is thrown down off of a house with a velocity of $v(t)=-32 t-8$ where t is time in seconds and v is $\mathrm{ft} / \mathrm{sec}$. The ball is 20 feet in the air at $t=1$. What is the initial height of the ball?

$$
\begin{array}{rlrl}
h(t) & =\int(-32 t-8) d t & h(t)=-16 t^{2}-8 t+44 \\
h(t) & =-16 t^{2}-8 t+c & & \\
20 & =-16-8+c & c=44 &
\end{array} 44 \mathrm{ft} .
$$

4. A particle moves along the y-axis with an acceleration of $a(t)=12 t-6$ with initial velocity of -10 and initial position 0 . Find the position of the function at the particle's minimum velocity.
Min Velocity when $v^{\prime}=0$

$$
\begin{aligned}
12 t-6 & =0 \\
t & =\frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{rl}
V(t)=6 t^{2}-6 t+c & y(t) \\
\begin{aligned}
\text { at the particle'sinimum velocity. } & =2 t^{3}-3 t^{2}-10 t \\
&
\end{aligned} & \begin{aligned}
2 & \left(\frac{1}{2}\right)
\end{aligned}=2\left(\frac{1}{8}\right)-3\left(\frac{1}{4}\right)-10\left(\frac{1}{2}\right) \\
& =\frac{1}{4}-\frac{3}{4}-5 \\
& -5.5
\end{array}
$$

5. Calculator active. A particle moves along the x-axis. The velocity of the particle at time t is given by $v(t)=$ $\frac{2}{t^{2}+3}$. If the position of the particle is $x=2$ when $t=4$, what is the position of the particle when $t=6$?

$$
x(6)=2+\int_{4}^{6} V(t) d t=2.147
$$

6. Calculator active. An object moves along the y-axis with initial position $y(0)=1$. The velocity of the object at time $t \geq 0$ is given by $v(t)=\cos (\pi t)$. What is the position of the object at time $t=3$?

$$
y(3)=1+\int_{0}^{3} v(t) d t=1
$$

7. Mr. Kelly leaves for a trip at 3:00 p.m. (time $t=0)$ and drives with velocity $v(t)=60-\frac{1}{2} t$ miles per hour, where t is measured in hours.
a. Find $\int_{0}^{2} v(t) d t$

$$
\begin{aligned}
& 60 t-\left.\frac{1}{4} t^{2}\right|_{0} ^{2} \\
& {\left[60 \cdot(2)-\frac{1}{4}(4)\right]-[0]=119} \\
& 120-1=1
\end{aligned}
$$

b. Explain the meaning of your answer to part a in the context of this problem.

2 hours into his trip, Mr. Kelly is 119 miles from his storting position
8. A particle's velocity is given by $v(t)=2 t-8$, where t is measured in seconds, v is measured in feet per

$$
\begin{aligned}
& \text { second, and } s(t) \text { represents the particle's position. } \\
& \text { a. If } s(0)=2 \text {, what is the value of } s(3) \text { ? } \\
& S(3)=2+\int_{0}^{3}(2 t-8) d t \\
& 2+\left.\left[t^{2}-8 t\right]\right|_{0} ^{3} \\
& 2+[(9-24)-(0)] \\
& 2+(-15) \\
& 5(3)=-13
\end{aligned}
$$

b. What is the net change in distance over the first 5 seconds?

$$
\begin{aligned}
& \int_{0}^{5}(2 t-8) d t \\
& t^{2}-\left.8 t\right|_{0} ^{5} \\
& (25-40)-(0)=-15 \mathrm{feet}
\end{aligned}
$$

c. What is the total distance traveled by the particle during the first 5 seconds? Show the set up AND your

$$
\begin{aligned}
& \text { work. } \\
& 2 t-8=0 \\
& \left|\int_{0}^{4}(2 t-8) d t\right|+\left|\int_{4}^{5}(2 t-8) d t\right| \\
& 2 t=\left.8 \quad\left|\left[t^{2}-8 t\right]\right|\right|_{0} ^{4}+\left.\left|\left[t^{2}-8 t\right]\right|\right|_{4} ^{5} \\
& t=4 \quad\left|\begin{array}{r}
(16-32)-0|+|(25-40)-(16-32)| \\
|-16|+|-15-16|
\end{array}\right|=\mid 7 \text { feet }
\end{aligned}
$$

9. A particle's velocity is given by $v(t)=t^{2}+2 t-15$, where t is measured in minutes, v is measured in meters per minute, and $s(t)$ represents the particle's position.
a. If $s(1)=-3$, what is the value of $s(3)$?

$$
\begin{aligned}
S(2)= & -3+\int_{1}^{3}\left(t^{2}+2 t-15\right) d t \\
& -3+\left.\left[1_{3}^{3} t^{3}+t^{2}-15 t\right]\right|_{1} ^{3} \\
& -3+[9+9-45]-\left[\frac{1}{3}+1-15\right]=-\frac{49}{3} \approx-16.333 \text { meters }
\end{aligned}
$$

b. What is the net change in distance over the first 5 minutes?

$$
\begin{aligned}
& \int_{0}^{5}\left(t^{2}+2 t-15\right) d t \\
& {\left.\left[\frac{1}{3} t^{3}+t^{2}-15 t\right]\right|_{0} ^{5}} \\
& {\left[\frac{1}{3}(125)+25-75\right]-0=\frac{125}{3}-\frac{150}{3}=-\frac{25}{3} \text { meters }}
\end{aligned}
$$

c. What is the total distance traveled by the particle during the first 5 minutes? Show the set up AND your

$$
\begin{array}{cc}
t^{t^{2}+2 t-15=0} & \left|\int_{0}^{3}\left(t^{2}+2 t-15\right) d t\right|+\left|S_{3}^{5}\left(t^{2}+2 t-15\right) d t\right| \\
(t+5)(t-3)=0 & \left|\left[\frac{1}{3} t^{3}+t^{2}-15 t\right]\right|_{0}^{3}\left|+\left|\left[\frac{1}{3} t^{3}+t^{2}-15 t\right]\right|_{3}^{5}\right] \\
t=-5 \quad t=3 & |(9+9-45)-0|+\left|\left(\frac{125}{3}+25-75\right)-(9+9-45)\right| \\
& |-27|+\left|\frac{125}{3}-23\right| \\
& 27+\frac{56}{3}=45.6667 \text { meters }
\end{array}
$$

10. Calculator active. A particle's velocity is given by $v(t)=6 \cos 3 t$, where t is measured in days, v is measured in yards per day, and $s(t)$ represents the particle's position.
a. If $s(0)=5$, what is the value of $s\left(\frac{\pi}{2}\right)$? Calculator allowed.

$$
S(\pi)=5+\int_{0}^{\frac{\pi}{2}} 6 \cos (3 t) d t=3 \text { yards }
$$

b. What is the net change in distance over the first $\frac{\pi}{2}$ days? Calculator allowed.

$$
-2 \text { yards }
$$

c. What is the total distance traveled by the particle during the first $\frac{\pi}{2}$ days? Show the set up and use a calculator to find the answer.

$$
\int_{0}^{\pi / 2}|G \cos (3 t)| d t=6 \text { yards }
$$

11. The graph to the right shows the velocity of an object moving along the x-axis over a 5 -second period.
a. If the objected started 2 meters to the right, where is the object after 3 seconds?

$$
2+\int_{0}^{3} v(t) d t
$$

$$
\alpha+5=7 \text { meters right }
$$

b. Where is the object after 5 seconds?

$$
2+5-3=4 \text { meters right }
$$

c. Find the total distance traveled by the object over the 5 -second
 period.

$$
5+3=8 \text { meters }
$$

12. The graph to the right shows the velocity of an object moving along the x-axis over a 5 -second period.
a. Find the total distance traveled by the object over the 5 -second period.

$$
2+2+1+\frac{1}{4}+\frac{1}{4}+2=7.5
$$

b. At time $t=2$, the particle is at the point where $x=10$. Where was the particle at time $t=0$?

$$
10-\int_{0}^{2} V(t) d t=10-(-4)
$$

8.2 Connecting Pos, Vel, Acc with Integrals

Test Prep

13. Calculator active. At time $t, 0<t<2.5$, the velocity of a particle moving along the x-axis is given by $v(t)=t \cos \left(t^{2}\right)$. Let $t=b$ be the time at which the particle changes direction from moving left to moving right. What is the total distance traveled by the particle during the time $0<t<b$?

$$
b=2.1708038
$$

$$
\int_{0}^{b}|v(t)| d t=1.5
$$

$\begin{array}{ll}\text { (A) } 0.5 & \text { (B) } 1.253\end{array}$
(C) 1.5
(D) 2.171

This next problem is a common type of problem on an AP exam. Make sure you understand it!
14. Calculator active. Mr. Kelly and Mr. Sullivan are doing a morning speed-walk race going down a straight street. For $0 \leq t \leq 20$, Mr. Kelly's velocity at time t is given by $K(t)=\frac{16500}{t^{2}-5 t+74.33}$ and Mr. Sullivan's velocity at time t is given by $S(t)=41 t^{3} e^{-0.6 t}$. Both $K(t)$ and $S(t)$ are positive for $0 \leq t \leq 20$ and are measured in yards per minute, and t is measured in minutes. Mr. Kelly has a 5 yard head-start at $t=0$, and is ahead of Mr. Sullivan for the entire time $0 \leq t \leq 20$.
a. Find the value of $\frac{1}{5} \int_{10}^{15} K(t) d t$. Using correct units, interpret the meaning of $\frac{1}{5} \int_{10}^{15} K(t) d t$ in the context of the problem.

$$
\frac{1}{5} \int_{10}^{15} K(t) d t=99.83242346
$$

Mr. Kelly's average velocity over the time interval $\mathbf{1 0} \leq \boldsymbol{t} \leq \mathbf{1 5}$ is $\mathbf{9 9}$. $\mathbf{8 3 2}$ yards per minute.
b. At time $t=7$, is Mr. Kelly speeding up or slowing down? Give a reason for your answer.

$$
K(7)>0 \text { and } K^{\prime}(7)=-19.03312<0
$$

At time $\boldsymbol{t}=\mathbf{7 , M r}$. Kelly is slowing down because he has positive velocity and negative acceleration.
c. Is the distance between Mr. Kelly and Mr. Sullivan at time $t=7$ increasing or decreasing? Give a reason for your answer.

Mr. Kelly's velocity at $t=7$ is $K(7)=186.7995019$
Mr. Sullivan's velocity at $t=7$ is $S(7)=210.8827968$
Since $K(7)-S(7)<0$, the distance between Kelly and Sullivan at $\boldsymbol{t}=\mathbf{7}$ is decreasing.
d. What is the maximum distance between Mr. Kelly and Mr. Sullivan over the time interval $0 \leq t \leq 20$? Justify your answer.

The distance between Kelly and Sullivan at time t is given by $5+\int_{0}^{t} K(x) d t-\int_{0}^{t} S(x) d x$.

$$
\frac{d}{d t}\left[5+\int_{0}^{t} K(x) d t-\int_{0}^{t} S(x) d x\right]=K(t)-S(t)=0
$$

$t=3.9268073$ and $t=8.246953$

\boldsymbol{t}	Distance between Kelly and Sullivan
0	$\mathbf{5}$
3.9268073	533.0478098
8.246953	428.7898849
20	959.6664322

The maximum distance between Kelly and Sullivan is 959.666 yards.

