## Find the area of the region bounded by the following graphs. Show your work.

1. 
$$y = x^2 - 4x - 5$$
 and  $y = 2x - 5$ 

2. 
$$y = 3x^2, y = 0, x = 1, x = 3$$

3. 
$$y = \ln x, y = -\sqrt{x}, \text{ and } x = 3$$

Set up an integral(s) that represents the shaded region. Do not solve. Use a calculator if necessary to help find the lower and upper bounds.

4. 
$$f(x) = x^2 - 4$$
,  $g(x) = x - 2$ ,  $h(x) = 2 - 3x^2$ 



5. 
$$y = \sqrt{x}$$
,  $y = x - 3$ ,  $x = 0$  and



6. 
$$f(x) = \sqrt{3x} + 1$$
,  $g(x) = x + 1$ 



Let R be the region bounded by the given curves as shown in the figure. If the line x = k divides R into two regions of equal area, find the value of k7.  $y = 3\sqrt{x}$ ,  $y = -\sqrt{x}$  and x = 4

7. 
$$y = 3\sqrt{x}, y = -\sqrt{x} \text{ and } x = 4$$



8. 
$$y = -\frac{1}{x^2}$$
,  $y = 3$ ,  $x = -3$ , and  $x = -1$ 



Answers to 8.4 CA #1

| 1. 36                                                                                     |  | 3. $\int_{0.4948664}^{3} \ln x + \sqrt{x}  dx = 4.3708$ |                                             | 4. $\int_{-1}^{1} (-x^2 + x + 2) dx + \int_{1}^{A} (-4x^2 + 6) dx$ where $A = 1.224744871$ |                        |
|-------------------------------------------------------------------------------------------|--|---------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------|------------------------|
| 5. $\int_0^1 (\sqrt{x} + 2) dx + \int_1^A (\sqrt{x} - x + 3) dx$<br>where $A = 5.3027756$ |  |                                                         | $6. \int_0^3 \left(\sqrt{3x} - x\right) dx$ | 7. $k \approx 2.5198$                                                                      | 8. $k \approx -1.9488$ |