Calculus

 and thoughts here!
8.4 Area Between Curves (with respect to x) Notes

Recall:

- Find the area under the curve of $f(x)$

How would you find the area between two curves?
Area Between Two Curves:

$$
\begin{aligned}
A= & \int_{a}^{b}[\quad] d x \\
& \geq \quad \text { for all } x \text { in }[a, b]
\end{aligned}
$$

1. Find the area bounded by the curves of $y=x^{2}+2, y=-x, x=0$, and $x=1$.

2. Find the area bounded by $y=2-x^{2}$ and $y=x$.
3. Set up the integral that allows you to find the area in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by $y=x-6$.

Be careful of a rounding error.
4. Find the area bounded by the curves $y=\ln x$ and $y=\frac{1}{2} x-2$.
5. Let R be the region bounded by the graphs $y=2 \sqrt{x}$ and $y=\frac{x^{2}}{4}$ as shown in the figure. If the line $x=k$ divides R into two regions of equal area, what is the value of k ?

8.4 Area Between Curves (with respect to \boldsymbol{x})

Practice

Sketch the graph of each equation, then set up the integral to find the area of the region bounded by the graphs. Do NOT evaluate, just set up the integral!

1. $f(x)=x^{2}+2, g(x)=-x$, $x=-2$, and $x=1$.

2. $f(x)=6-x^{2}$ and $g(x)=x$

3. $y=x, y=2-x, y=0$

Find the area of the region bounded by the following graphs. Show your work.
4. $y=\frac{1}{x^{2}}, y=0, x=1, x=5$
5. $y=x^{2}$ and $y=x^{3}$
6. $y=\sqrt{x}, x=0$ and $y=x-2$
7. Calculator active. $y=e^{x^{2}}-2$ and $y=\sqrt{4-x^{2}}$

Set up an integral(s) that represents the shaded region. Do not solve. Use a calculator if necessary to help find the lower and upper bounds.
8. $y=x^{2}-4 x+3, y=3$, and $y=6-2 x$

9. $y=\sqrt{x}, y=0$, and $y=3-x$
10. $y=4 x-x^{2}, y=1$, and $y=x$

Let \boldsymbol{R} be the region bounded by the given curves as shown in the figure. If the line $\boldsymbol{x}=\boldsymbol{k}$ divides \boldsymbol{R} into two regions of equal area, find the value of \boldsymbol{k}
11. $y=\frac{4}{x^{2}}, y=-2, x=1$, and $x=4$

12. $y=x^{2}-8 x+16, y=-2 x+4, x=2$, and $x=4$

13. $y=\sqrt{x}, y=-\sqrt{x}$, and $x=3$

8.4 Area Between Curves (with respect to x)

Test Prep

14. Calculator active problem. If $0 \leq k \leq \frac{\pi}{4}$ and the area under the curve $y=\sin x$ from $x=k$ to $x=\frac{\pi}{4}$ is 0.2 , then what is the value of k ?
15. Calculator active problem. The shared region in the figure above is bounded by the graph $y=$ $\sqrt{2+x-x^{2}}$ and the lines $x=-3, x=3$, and $y=2$. What is the area of this region?

