8.5 Area Between Curves (with respect to y)

For each region, set up an integral with respect to \boldsymbol{y} that represents the area of the region. Do not solve.

1. $y=\sqrt[3]{x}, y=x$

2. $y=x^{2}-2$ and $y=2$

3. $x=4-y^{2}, y=\frac{2}{3} x-1, x=0$

Set up the integral(s) that give the area of the region bounded by the given equations. Show the equivalent set up with respect to \boldsymbol{x} as well as with respect to \boldsymbol{y}.
4. $y=x^{3}, y=x$
$1^{\text {st }}$ quadrant only!
with respect to x

Sketch a graph here in the middle!

with respect to y

Find the area of the region bounded by the following curves. Set up your integrals with respect to y. A calculator is allowed to evaluate the integral.
5. $y=1-x^{2}, y=\sqrt{x}-1$ and $y=-\sqrt{x}-1$.

S $\angle 9 Z^{\prime} Z=\kappa p[z(I+\kappa)-\kappa-\tau /]^{\text {Izesez }} \int_{0}$		$\begin{gathered} \kappa p\left(\kappa-K \int_{\varepsilon}\right)_{1}^{0} \int \cdot q t \\ x p\left({ }_{\varepsilon} x-x\right)_{1}^{0} \int \cdot e_{t} \end{gathered}$
	$\kappa p(\underline{z+\kappa} / \tau)_{z}^{z-\int} \tau$	$\kappa p\left({ }_{\varepsilon} \kappa-\kappa\right){ }_{L}^{0} \int \cdot 1$

