For each region, set up an integral with respect to y that represents the area of the region. Do not solve.

1. $x=y^{2}, x=y+2$
$\int_{-1}^{2}\left(y+2-y^{2}\right) d y$
2. y

$$
\begin{aligned}
& x=-y+3 \quad x=y+2 \\
& -y+3=y+2 \\
& -2 y=-1 \\
& y=\frac{1}{2} \\
& \int_{-3}^{\frac{1}{2}}(y+2-1) d y+\int_{=2}^{4}(-y+3--1) d y \\
& \int_{-3}^{\frac{1}{2}}(y+3) d y+\int_{\frac{2}{2}}^{4}(4-y) d y
\end{aligned}
$$

2. $y=\ln x, y=5-x, y=0$
$e^{y}=x$

$$
\int_{0}^{1.3065}\left(5-y-e^{y}\right) d y
$$

$$
\begin{aligned}
& \begin{array}{ll}
4=y=x^{2}, y=x+2 \\
x=\sqrt{y} & x=y-2 \\
x=-\sqrt{y}
\end{array} \\
& \int_{0}^{1}(\sqrt{y}-\sqrt{y}) d y+\int_{1}^{9_{1}^{1}}(\sqrt{y}-(y-2))^{2} d y \\
& \int_{0}^{1} 2 \sqrt{y} d y+\int_{1}^{4}(\sqrt{y}-y+2) d y
\end{aligned}
$$

Set up the integrals) that give the area of the region bounded by the given equations. Show the equivalent set up with respect to \boldsymbol{x} as well as with respect to \boldsymbol{y}.
5. $y=\sqrt{x}, x=0$ and $y=x-2 \quad \underline{\text { Sketch }}$ a graph here in the middle!
with respect to x

with respect to y

$$
\int_{0}^{4}(\sqrt{x}-x+2) d x
$$

$$
\begin{gathered}
x=y^{2} \quad x=y+2 \\
\int_{-2}^{0}(y+2) d y+\int_{0}^{2}\left(y+2-y^{2}\right) d y
\end{gathered}
$$

6. $y=x^{2}, y=5, x=-2, x=1$ with respect to x

Sketch a graph here in the middle!

Find the area of the region bounded by the following curves. Set up your integrals with respect to y. A calculator is allowed to evaluate the integral.
7. $x=y^{2}-4, x=-3 y$

8. $y=x, y=2-x, y=0$

$$
\begin{aligned}
& x=2-y \\
& y=2-y \\
& 2 y=2 \\
& y=1
\end{aligned}
$$

8.5 Area Between Curves (with respect to y)
9. Solve the following WITHOUT the help of a calculator. Let R be the region bounded by the graphs of $y=\sqrt{x}$ on top and $y=\frac{4}{\pi} \sin ^{-1}\left(\frac{x}{4}\right)$ and on bottom, as shown in the figure. What is the area of the region? (hint: integrating with respect to y is easier than with respect to x for this problem.)

$$
\begin{aligned}
& \frac{\pi}{4} y=\sin ^{-1}\left(\frac{x}{4}\right) \\
& \sin \left(\frac{\pi}{4} y\right)=\frac{x}{4} \\
& 4 \sin \left(\frac{\pi}{4} y\right)=x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{4-\sin b} y^{2}=x \\
& \frac{4}{\pi} \cdot 4\left[-\cos \left(\frac{\pi}{4} y\right)\right]-\left[\frac{y^{3}}{3}\right] \\
& \left.-\frac{16}{\pi} \cos \left(\frac{\pi}{2}\right)-\frac{8}{2} / 3-y^{2}\right) d y \\
& 0-\left(-\frac{16}{\pi} \cos (0)-0\right)
\end{aligned}
$$

