8.6 Area – More than Two Intersections

0.0 AICU		CA #2		
Calculus	Name:			
The given functions create boundaries for multiple regions.				
1. $y = x^3$	y, y = x	2. $y = -x^3 + 3x^2 - x$, $y = -2x + 1$		
a.	Find x -values of the points of intersection, and label them from smallest to largest as A, B, and C.	a. Find <i>x</i>-values of the points of intersection, and label them from smallest to largest as A, B, and C.		
	A =	A = B =		
	B =			
	C =	$\mathcal{C} =$		
b.	Set up integrals	b. Set up integrals		

3. The figure shows the graphs of y = -x, y = 2x, and $y = 3 + \frac{1}{2}x - \frac{1}{2}x^2$ for $-2 \le x \le 3$. The *x*-coordinates of the points of intersection of the graphs are x_1 and x_2 , where $x_1 < x_2$. Write a sum of integrals that represents the shaded regions. You do NOT need to solve for x_1 and x_2 .

$\int_{-\infty}^{\infty} \left(\varepsilon - x \frac{z}{\varepsilon} + z \frac{z}{\varepsilon} \right)^{2x} f + xp \left(z \frac{z}{\varepsilon} - x \frac{z}{\varepsilon} - \varepsilon \right)^{0} f$		$\int_{c}^{B} (-x_{3} + 3x_{5} + x - 1) dx$		
$+xp\left(zx\frac{z}{z}-x\frac{z}{z}+z\right)$	3. $\int_{-2}^{-2} \left(\frac{1}{2}x^2 - \frac{3}{2}x - 3\right) dx + \int_{0}^{x} \left(\frac{1}{2}x^2 - \frac{3}{2}x^2 - 3\right) dx$		$5p. \int_{a}^{y} (x^{3} - 3x^{2} - x + 1)$	
C = 3.2143			C = J	
8094.0 = 8		. 0 <i>c</i>	B = 0	
1870.0 = A .62	xp (₈	$(x-x)_0^1 + xp(x-\varepsilon x)_0^1$.dl	f - = A .61	
Answers to 8.6 CA #2				