8.6 Area - More than Two Intersections

The given functions create boundaries for multiple regions.

1. $y=x^{3}, y=x$
a. Find x-values of the points of intersection, and label them from smallest to largest as A, B, and C .

$$
\begin{aligned}
& A= \\
& B= \\
& C=
\end{aligned}
$$

b. Set up integrals
2. $y=-x^{3}+3 x^{2}-x, y=-2 x+1$
a. Find x-values of the points of intersection, and label them from smallest to largest as A, B, and C .

$$
A=
$$

$$
B=
$$

$$
C=
$$

b. Set up integrals
3. The figure shows the graphs of $y=-x, y=2 x$, and $y=3+\frac{1}{2} x-\frac{1}{2} x^{2}$ for $-2 \leq x \leq 3$. The x-coordinates of the points of intersection of the graphs are x_{1} and x_{2}, where $x_{1}<x_{2}$. Write a sum of integrals that represents the shaded regions. You do NOT need to solve for x_{1} and x_{2}.

