The bounded region shown for each problem represents the base of a solid. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

1. Square cross sections perpendicular to the x-axis.

2. Square cross sections perpendicular to the x-axis.
$y=\ln x, y=3-x$ and the x-axis

3. Square cross sections perpendicular to the y-axis.
4. A region is bounded by $y=-x^{2}+2 x+3$ and $y=2-x$ as shown in the figure. The cross sections perpendicular to the x-axis are rectangles whose height is 5 times the width.

5. The base of a solid is the region bounded by the y-axis, the graphs of $y=\sqrt{x}, y=0$, and $y=3-x$. For the solid, each cross section perpendicular to the y-axis is a rectangle whose height is 3 times the width.

6. A region is bounded by $y=0.8 x^{4}-2 x^{3}+2$ and $y=2$ as shown in the figure. Each cross section perpendicular to the x-axis is a rectangle whose height is 8 .

7. The region bounded by the y-axis, the graph of $y=\sqrt{x}$ and the line $y=4$ is shown. For the solid, each cross section perpendicular to the y-axis is a rectangle whose height is 3 .

8. The graphs of $y=x^{2}-x-3$ and $y=x$ create a bounded region that represents the base of a solid. The cross sections of this solid are perpendicular to the x -axis and form squares. Find the volume of the solid.

Answers to 8.7 CA \#2

Answers to 8.7 CA \#2		
1. $\int_{0}^{3}(\sqrt{3 x}-x)^{2} d x=0.9$	2. $\int_{1}^{4}\left(y-1-\frac{(y-1)^{2}}{3}\right)^{2} d y=0.9$	3. $\int_{1}^{2.2079}(\ln x)^{2} d x+$ $\int_{2.2079}(3-x)^{2} d x \approx 0.469$
4. $\int_{0}^{0.792}\left(3-y-e^{y}\right)^{2} d y \approx 1.1837$	$\int_{0}^{3} 5\left(-x^{2}+3 x+1\right)^{2} d x=100.5$	6. $\int_{0}^{1.3027} 3\left(3-y-y^{2}\right)^{2} d y \approx 15.4169$
7. $\int_{0}^{2.5} 8\left(-0.8 x^{4}+2 x^{3}\right)^{2} d x=77.5049$	8. $\int_{0}^{4} 3\left(y^{2}\right) d y=64$	9. $\int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x=34.133$

