8.7 Volumes with Cross Sections: Squares and Rectangles Calculus
The bounded region shown for each problem represents the base of a solid. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

1. Square cross sections perpendicular to the x-axis.

$$
\int_{0}^{1(2-\sqrt[3]{x})} d x
$$

$$
3.2
$$

2. Square cross sections perpendicular to the y-axis.

$$
\int_{0}^{2}\left(y^{3}\right)^{2} d y
$$

$$
18.2857
$$

3. Square cross sections perpendicular to the x-axis.

$$
\begin{gathered}
\int_{1}^{3}(x-1) d x \\
2
\end{gathered}
$$

4. Square cross sections

$$
\begin{aligned}
& \text { perpendicular to the } y \text {-axis. } \\
& \int_{0}^{\sqrt{2}}\left(3-\left(3^{2}+1\right)\right)^{2} d y \\
& \left.\int_{0}^{5}(2-y)^{2}\right) d y \\
& 3.0169
\end{aligned}
$$

5. Square cross sections perpendicular to the x-axis.

$$
\begin{gathered}
\int_{1}^{e}(2-2 \ln x)^{2} d x \\
1.746
\end{gathered}
$$

$y=2 \ln x, y=2$, and $x=1$

6. Square cross sections perpendicular to the y-axis.

$$
\begin{gathered}
\int_{0}^{2}\left(e^{y}-1\right)^{2} d y \\
1.5159
\end{gathered}
$$

7. The y-axes, $y=\sin x$, and $y=1$ for $0 \leq x \leq \frac{\pi}{2}$. Each cross section perpendicular to the x-axis is a rectangle whose height is 3 times its width.

$$
\begin{aligned}
& \int_{0}^{1}(1-\sin x)(3)(1-\sin x) d x \\
& 3 \int_{0}^{2}(1-\sin x)^{2} d x=1.0685
\end{aligned}
$$

8. The region in the first quadrant bounded by $y=e^{x}$ and the vertical line $x=1$. The cross sections perpendicular to the y-axis are rectangles whose height is 2 times their width. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.

$$
\begin{aligned}
& \left.\int_{0}^{1 i n}(1) \cdot(2)(1) d y+\int_{1}^{e}(1-\ln y) \cdot(2)(1-\ln)\right) \\
& 2 \int_{0}^{d} d y+2 \int_{1}^{e}(1-\ln y)^{2} d y
\end{aligned}
$$

9. $y=\sqrt{x}$ and $y=\frac{x}{3}$ cross sections perpendicular to the y-axis are rectangles whose height is 6 .

$$
\int_{0}^{3}\left(3 y-y^{y}\right) \cdot 6 d y=27
$$

10. The x-axis and the graph of $y=\sqrt{1-x^{2}}$. Each cross section perpendicular to the x-axis is a rectangle whose height is 10 times the width.

$$
\begin{aligned}
& \int_{-1}^{1}\left(\sqrt{1-x^{2}}\right) \cdot(10)\left(\sqrt{1-x^{2}}\right) d x \\
& 10 \int_{-1}^{\left(1-x^{x}\right)} d x=13.333
\end{aligned}
$$

The following curves create a bounded region. Each solid has cross sections perpendicular to the x-axis that are squares. Find the volume of each solid based on the given cross sections. Set up the integrals) first, then use a calculator to evaluate.
11. $y=x-4, y=4-x$, and $x=0$.

$$
\begin{gathered}
x-4=4-x \\
2 x=8 \\
x=4 \\
\int_{0}^{4}[(4-x)-(x-4)]^{2} d x \\
\int_{0}^{4}(8-2 x)^{2} d x \\
85.333
\end{gathered}
$$

13. $y=x^{2}-4$, and $y=4$

14. $x^{2}+y^{2}=100$

$$
y^{2}=100-x^{2}
$$

$$
y= \pm \sqrt{100-x^{2}}
$$

5333.333

$$
\begin{aligned}
& \int_{-10}^{10}\left(\sqrt{100-x}--\sqrt{100-x^{-x}}\right)^{2} d x \\
& \int_{-10}^{10}(2 \sqrt{100-x})^{2} d x
\end{aligned}
$$

$$
4 \int_{-10}^{10}\left(100-x^{3}\right) d x
$$

