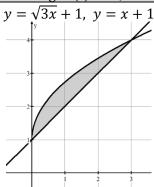
8.8 Volumes with Cross Sections: Triangles and Semicircles

Calculus Name:

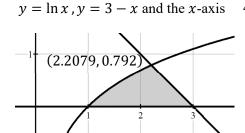
The bounded region shown for each problem represents the base of a solid. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

1. Semicircle cross sections perpendicular to the *x*-axis.



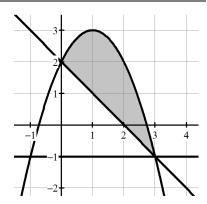
2. Equilateral triangle cross sections perpendicular to the *y*-axis.

3. Isosceles right triangle cross sections perpendicular to the x-axis.

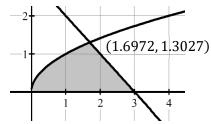


4. Semicircle cross sections perpendicular to the *y*-axis.

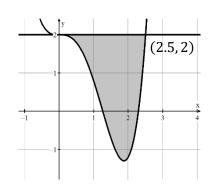
5. A region is bounded by $y = -x^2 + 2x + 3$ and y = 2 - x as shown in the figure. The cross sections perpendicular to the *x*-axis are isosceles right triangles. Set up the integral, but do not evaluate.



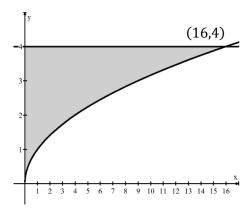
6. The base of a solid is the region bounded by the y-axis, the graphs of $y = \sqrt{x}$, y = 0, and y = 3 - x. For the solid, each cross section perpendicular to the y-axis is a semicircle. Set up the integral, but do not evaluate.



7. A region is bounded by $y = 0.8x^4 - 2x^3 + 2$ and y = 2 as shown in the figure. Each cross section perpendicular to the *x*-axis is an equilateral triangle. Set up the integral, but do not evaluate.



8. The region bounded by the y-axis, the graph of $y = \sqrt{x}$ and the line y = 4 is shown. For the solid, each cross section perpendicular to the y-axis is a semicircle. Set up the integral, but do not evaluate.



9. The graphs of $y = x^2 - x - 3$ and y = x create a bounded region that represents the base of a solid. The cross sections of this solid are perpendicular to the x-axis and form semicircles. Find the volume of the solid. Set up the integral, but do not evaluate.

Answers to 8.8 CA #1

1. $\frac{\pi}{8} \int_0^3 (\sqrt{3x} - x)^2 dx \approx 0.353$ 2. $\int_1^4 \frac{\sqrt{3}}{4} 0.3897$		$\frac{1}{2}\left(y-1-\frac{(y-1)^2}{3}\right)^2dy\approx$		3. $\frac{1}{2} \int_{1}^{2.2079} (\ln x)^2 dx + \frac{1}{2} \int_{2.2079}^{3} (3-x)^2 dx \approx 0.2345$	
4. $\frac{\pi}{8} \int_0^{0.792} (3 - y - e^y)^2 dy \approx 0.4648$ 5. $\frac{1}{2}$.		$\frac{1}{2} \int_0^3 (-x^2 + 3x + 1)^2 dx$		6. $\frac{\pi}{8} \int_0^{1.3027} (3 - y - y^2)^2 dy$	
7. $\frac{\sqrt{3}}{4} \int_0^{2.5} (-0.8x^4 + 2x^3)^2 dx$	$\frac{\sqrt{3}}{4} \int_0^{2.5} (-0.8x^4 + 2x^3)^2 dx$			9. $\frac{\pi}{8} \int_{-1}^{3} (-x^2 + 2x + 3)^2 dx$	