The bounded region shown for each problem represents the base of a solid. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

1. Semicircle cross sections perpendicular to the x-axis.

2. Isosceles right triangle cross sections perpendicular to the x axis.
$y=\ln x, y=3-x$ and the x-axis

3. Equilateral triangle cross sections perpendicular to the y axis.
4. Semicircle cross sections perpendicular to the y-axis.
5. A region is bounded by $y=-x^{2}+2 x+3$ and $y=2-x$ as shown in the figure. The cross sections perpendicular to the x-axis are isosceles right triangles. Set up the integral, but do not evaluate.

6. The base of a solid is the region bounded by the y-axis, the graphs of $y=\sqrt{x}, y=0$, and $y=3-x$. For the solid, each cross section perpendicular to the y-axis is a semicircle. Set up the integral, but do not evaluate.

7. A region is bounded by $y=0.8 x^{4}-2 x^{3}+2$ and $y=2$ as shown in the figure. Each cross section perpendicular to the x-axis is an equilateral triangle. Set up the integral, but do not evaluate.

8. The region bounded by the y-axis, the graph of $y=\sqrt{x}$ and the line $y=4$ is shown. For the solid, each cross section perpendicular to the y-axis is a semicircle. Set up the integral, but do not evaluate.

9. The graphs of $y=x^{2}-x-3$ and $y=x$ create a bounded region that represents the base of a solid. The cross sections of this solid are perpendicular to the x -axis and form semicircles. Find the volume of the solid. Set up the integral, but do not evaluate.

Answers to 8.8 CA \#1

2. $\int_{1}^{4} \frac{\sqrt{3}}{4}\left(y-1-\frac{(y-1)^{2}}{3}\right)^{2} d y \approx$ 0.3897	3. $\frac{1}{2} \int_{1}^{2.2079}(\ln x)^{2} d x+$ $\frac{1}{2} \int_{2.2079}^{3}(3-x)^{2} d x \approx 0.2345$	
4. $\frac{\pi}{8} \int_{0}^{0.792}\left(3-y-e^{y}\right)^{2} d y \approx 0.4648$	5. $\frac{1}{2} \int_{0}^{3}\left(-x^{2}+3 x+1\right)^{2} d x$	6. $\frac{\pi}{8} \int_{0}^{1.3027}\left(3-y-y^{2}\right)^{2} d y$
7. $\frac{\sqrt{3}}{4} \int_{0}^{2.5}\left(-0.8 x^{4}+2 x^{3}\right)^{2} d x$	8. $\frac{\pi}{8} \int_{0}^{4}\left(y^{4}\right) d y$	9. $\frac{\pi}{8} \int_{-1}^{3}\left(-x^{2}+2 x+3\right)^{2} d x$

