The bounded region shown for each problem represents the base of a solid. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

1. Equilateral triangle cross sections perpendicular to the x axis.
$y=2 \sin \left(\frac{\pi}{4} x\right)$ and $y=x$

2. Semicircle cross sections perpendicular to the y-axis.
3. Semicircle cross sections perpendicular to the x-axis.

4. Isosceles right triangle cross sections perpendicular to the y axis.
5. Let R be the region bounded by the graphs $y=-\frac{1}{x^{2}}, y=3, x=-3$, and $x=-1$ as shown in the figure. The cross sections perpendicular to the x-axis are semicircles. Set up the integral to find the volume of the solid, but do not evaluate.

6. The base of a solid is the region bounded by the y-axis, the graph of $y=2 \sqrt{x}$ and the horizontal line $y=4$. For the solid, each cross section perpendicular to the y-axis is an isosceles right triangle. Set up the integral to find the volume of the solid, but do not evaluate.

7. $y=\sin \left(\frac{\pi}{3} x\right)$ and the x-axis as shown in the figure. Each cross section perpendicular to the x-axis is a semicircle. Set up the integral to find the volume of the solid, but do not evaluate.

8. The x-axis $y=\ln x, y=0$, and $y=5-x$. Each cross section perpendicular to the y-axis is an equilateral triangle. Set up the integral to find the volume of the solid, but do not evaluate.

9. The graphs of $y=x^{2}-4$ and $y=4-2 x$ create a bounded region that represents the base of a solid. The cross sections of this solid are perpendicular to the x-axis and form semicircles. Set up the integral to find the volume of the solid, but do not evaluate.

Answers to 8.8 CA \#2

1. $\frac{\sqrt{3}}{4} \int_{0}^{2}\left(2 \sin \left(\frac{\pi}{4} x\right)-x\right)^{2} d x \approx$	2. $\frac{\pi}{8} \int_{0}^{2}\left(y-\frac{4}{\pi} \sin ^{-1}\left(\frac{y}{2}\right)\right)^{2} d y \approx$	3. $\frac{\pi}{8} \int_{0}^{3}(2 \sqrt{x})^{2} d x \approx 7.0685$				
0.0788			\quad	4. $\frac{1}{2} \int_{-\sqrt{3}}^{\sqrt{3}}\left(3-y^{2}\right)^{2} d y=8.1318$	5. $\frac{\pi}{8} \int_{-3}^{-1} 2\left(3+\frac{1}{x^{2}}\right)^{2} d x$	6. $\frac{1}{2} \int_{0}^{4}\left(\frac{y^{2}}{4}\right)^{2} d x$
:---	:---	:---				
7. $\frac{\pi}{8} \int_{0}^{3}\left(\sin \left(\frac{\pi}{3} x\right)\right)^{2} d x$	8. $\frac{\sqrt{3}}{4} \int_{0}^{1.3065}\left(5-y-e^{y}\right)^{2} d y$	9. $\frac{\pi}{8} \int_{-4}^{2}\left(-x^{2}-2 x+8\right)^{2} d x$				

