8.8 Volumes with Cross Sections: Triangles and Semicircles

5. Let *R* be the region bounded by the graphs $y = -\frac{1}{x^2}$, y = 3, x = -3, and x = -1 as shown in the figure. The cross sections perpendicular to the *x*-axis are semicircles. Set up the integral to find the volume of the solid, but do not evaluate.

6. The base of a solid is the region bounded by the y-axis, the graph of $y = 2\sqrt{x}$ and the horizontal line y = 4. For the solid, each cross section perpendicular to the y-axis is an isosceles right triangle. Set up the integral to find the volume of the solid, but do not evaluate.

7. $y = \sin\left(\frac{\pi}{3}x\right)$ and the *x*-axis as shown in the figure. Each cross section perpendicular to the *x*-axis is a semicircle. Set up the integral to find the volume of the solid, but do not evaluate.

3

4

8. The x-axis $y = \ln x$, y = 0, and y = 5 - x. Each cross section perpendicular to the y-axis is an equilateral triangle. Set up the integral to find the volume of the solid, but do not evaluate.

9. The graphs of $y = x^2 - 4$ and y = 4 - 2x create a bounded region that represents the base of a solid. The cross sections of this solid are perpendicular to the *x*-axis and form semicircles. Set up the integral to find the volume of the solid, but do not evaluate.

Answers to 8.8 CA #2				
	1. $\frac{\sqrt{3}}{4} \int_{0}^{2} \left(2\sin\left(\frac{\pi}{4}x\right) - x \right)^{2} dx \approx 0.0788$ 4. $\frac{1}{2} \int_{-\sqrt{3}}^{\sqrt{3}} (3 - y^{2})^{2} dy = 8.1318$		2. $\frac{\pi}{8} \int_0^2 \left(y - \frac{4}{\pi} \sin^{-1} \left(\frac{y}{2} \right) \right)^2 dy \approx 0.0715$	3. $\frac{\pi}{8}\int_0^3 (2\sqrt{x})^2 dx \approx 7.0685$
			5. $\frac{\pi}{8} \int_{-3}^{-1} 2\left(3 + \frac{1}{x^2}\right)^2 dx$	6. $\frac{1}{2}\int_0^4 \left(\frac{y^2}{4}\right)^2 dx$
	$7. \frac{\pi}{8} \int_0^3 \left(\sin\left(\frac{\pi}{3}x\right) \right)^2 dx$	8. $\frac{\sqrt{3}}{4}$	$\frac{3}{5}\int_0^{1.3065} (5-y-e^y)^2 dy$	9. $\frac{\pi}{8}\int_{-4}^{2}(-x^2-2x+8)^2dx$