Calculus

Write your questions and thoughts here!

8.8 Volumes with Cross Sections: Triangles and Semicircles

A region is bounded by $y=x^{2}$ and $y=\sqrt{x}$, and forms the base of various solids. The cross sections of each solid are listed below, but they are all perpendicular to the x-axis.
a. Equilateral triangle
b. Isosceles right triangle
c. Semicircle

Volume of a Solid with known Cross Sections

$$
V=\int_{a}^{b} A(x) d x
$$

where $\boldsymbol{A}(\boldsymbol{x})$ is the area of a cross section perpendicular to the x-axis.

EQUILATERAL TRIANGLE cross sections	ISOSCELES RIGHT TRIANGLE cross sections
$V=\int_{a}^{b}$	$V=\int_{a}^{b}$
where $s=$	$s=$

SEMICIRCLES cross sections

$$
V=\int_{a}^{b}
$$

where $r=$

Find the volume of each solid with the given cross sections perpendicular to the x-axis.
a. Equilateral triangle
b. Isosceles right triangle
c. Semicircle

8.8 Volumes with Cross Sections: Triangles and Semicircles

Calculus

Practice

The bounded region shown for each problem represents the base of a solid. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

1. Semicircle cross sections perpendicular to the x-axis.

2. Equilateral triangle cross sections perpendicular to the y axis.
3. Isosceles right triangle, with a

4. Semicircle cross sections perpendicular to the y-axis.
5. Semicircle cross sections perpendicular to the x-axis.

6. Isosceles right triangle, with a leg on the base perpendicular to the y-axis.
7. The y-axis, $y=\sin x$, and $y=1$ for $0 \leq x \leq \frac{\pi}{2}$. Each cross section perpendicular to the y-axis is a semicircle.

8. The region in the first quadrant bounded by $y=e^{x}$ and the vertical line $x=1$. The cross sections perpendicular to the y-axis are equilateral triangles.

9. The region bounded by $y=\sqrt{x}$ and $y=\frac{x}{3}$ is the base of a solid with cross sections perpendicular to the y-axis that are semicircles.

10. The x-axis and the graph of $y=\sqrt{1-x^{2}}$. Each cross-section perpendicular to the x-axis is an isosceles right triangle with the leg (not the hypotenuse) on the base.

The following curves create a bounded region. Each solid has cross sections perpendicular to the \mathbf{x}-axis that are semicircles. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.
11. $y=x-4, y=4-x$, and $x=0 . \quad$ 12. $x^{2}+y^{2}=49$

No test prep for this lesson because these questions are similar to the free response portion of an AP Exam.

