8.8 Volumes with Cross Sections: Triangles and Semicircles

Calculus

Solutions

Practice

The bounded region shown for each problem represents the base of a solid. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

1. Semicircle cross sections

3. Isosceles right triangle perpendicular to the x-axis.

4. Semicircle cross sections perpendicular to the y-axis.

1847

5. Semicircle cross sections perpendicular to the x-axis.

6. Isosceles cross sections perpendicular to the y-axis.

7. The y-axis, $y = \sin x$, and y = 1 for $0 \le x \le \frac{\pi}{2}$. Each cross section perpendicular to the y-axis is a semicircle

8. The region in the first quadrant bounded by $y = e^x$ and the vertical line x = 1. The cross sections perpendicular to the y-axis are equilateral triangles.

9. $y = \sqrt{x}$ and $y = \frac{x}{3}$ cross sections perpendicular to the y-axis are semicircles.

$$\int_{3}^{3} \frac{1}{2} \left(\frac{3y - y^{2}}{2} \right) dy$$

$$= \frac{1}{8} \int_{3}^{3} \left(\frac{3y - y^{2}}{2} \right) dy = \frac{3.1808}{3.1808}$$

10. The *x*-axis and the graph of $y = \sqrt{1 - x^2}$. Each cross section perpendicular to the *x*-axis is an isosceles triangle.

The following curves create a bounded region. Each solid has cross sections perpendicular to the x-axis that are semicircles. Find the volume of each solid based on the given cross sections. Set up the integral(s) first, then use a calculator to evaluate.

12. $x^2 + v^2 = 49$

11.
$$y = x - 4$$
, $y = 4 - x$, and $x = 0$.

$$y^{2} = 49 - x^{2}$$

$$y = \pm \sqrt{49 - x^{2}}$$

$$-\frac{1}{2} \left(\sqrt{49 - x^{2}} - \sqrt{49 - x^{2}} \right) dx$$

$$y^{2} = 49 - x^{2}$$

$$-\frac{1}{2} \left(\sqrt{49 - x^{2}} - \sqrt{49 - x^{2}} \right) dx$$

$$y^{2} = 49 - x^{2}$$

$$-\frac{1}{2} \left(\sqrt{49 - x^{2}} - \sqrt{49 - x^{2}} \right) dx$$

$$-\frac{1}{2} \left(\sqrt{49 - x^{2}} - \sqrt{49 - x^{2}} \right) dx$$

$$-\frac{1}{2} \left(\sqrt{49 - x^{2}} - \sqrt{49 - x^{2}} \right) dx$$

No test prep for this lesson because these questions are similar to the free response portion of an AP Exam.