8.9 Disc Method: Revolve Around \boldsymbol{x} or \boldsymbol{y} Axis

For each problem, sketch the area bounded by the equations and revolve it around the \boldsymbol{x}-axis. Find the volume of the solid formed by this revolution. Leave your answers in terms of $\boldsymbol{\pi}$.

1. $y=-x+4, x=1, y=0$
2. $y=-\sqrt{x}, x=2, x=3$

Same instructions as above but use a calculator and round to three decimals.
3. $y=2-x^{2}, x=0$
4. $y=\sqrt{16-x^{2}}, x=-1, y=0$

Same instructions as above but revolve around the y-axis now. Leave your answers in terms of π.
5. $y=\sqrt{16-x^{2}}, x \geq 0, y=0$
6. $y=x^{3}, x=0, y=8$

$u \frac{s}{96}=\kappa p_{z}\left(\kappa \int_{\varepsilon}\right)_{8}^{0} \int^{0} u \cdot 9$	$u \frac{\varepsilon}{8 z \tau}=\kappa p\left({ }_{z} K-9 \mathrm{~L}\right){ }_{\square}^{0}{ }^{0} u \cdot \varsigma$	96SZ'E8I $=x p\left({ }_{z} x-9 \mathrm{~L}\right)^{\tau-} \int u \cdot t$
$8 \angle \forall 6=x p_{z}\left({ }_{z} x-z\right)_{\underline{z}} \int^{0} \mu \cdot \varepsilon$	$u \frac{z}{s}=x p x \int_{\varepsilon}^{z} u \cdot \tau$	$u_{6}=x p_{z}(t+x-)_{t}^{\mathrm{T}} \int u \cdot \mathrm{I}$

