8.9 Disc Method: Revolve Around x or y Axis

Calculus Nar

For each problem, sketch the area bounded by the equations and revolve it around the x-axis. Find the volume of the solid formed by this revolution. Leave your answers in terms of π .

1.
$$y = 2x^2$$
, $x = 2$, $y = 0$

2.
$$y = 4 - x$$
, $x = 0$, $y = 0$

Same instructions as above but use a calculator and round to three decimals.

3.
$$y = x^3$$
, $y = 0$, $x = 3$

4.
$$y = \sqrt{4 - x^2}$$
, $y = 0$ in Quadrant I.

Same instructions as above but revolve around the y-axis now. Leave your answers in terms of π .

5.
$$y = 2x^2$$
, $x = 0$, $y = 2$

6.
$$y = 3 - \frac{1}{6}x$$
, $x = 0$, $y = 0$

$n^4 \Delta \xi = \chi b^5 (\chi \partial - 81) \pi_0^{\xi}$.6	$\pi = \chi b \left(\frac{\chi}{\varsigma}\right) \pi {}_0^2 \int . \xi$	$227.61 = xb(^{2}x - 4)\pi {}_{0}^{2} $.4
$\xi = 186 = xb^{-6}x\pi^{\xi}$	$\pi \frac{4}{\varepsilon} = xb^{2}(x - \hbar)\pi^{4} \int_{0}^{\infty} .2$	$n \frac{821}{8} = xb \left({}^{4}x \right) n \frac{2}{0} $. I