8.9 Disc Method: Revolve Around \boldsymbol{x} or \boldsymbol{y} Axis

For each problem, sketch the area bounded by the equations and revolve it around the \boldsymbol{x}-axis. Find the volume of the solid formed by this revolution. Leave your answers in terms of $\boldsymbol{\pi}$.

1. $y=2 x^{2}, x=2, y=0$
2. $y=4-x, x=0, y=0$

Same instructions as above but use a calculator and round to three decimals.
3. $y=x^{3}, y=0, x=3$
4. $y=\sqrt{4-x^{2}}, y=0$ in Quadrant I.

Same instructions as above but revolve around the \boldsymbol{y}-axis now. Leave your answers in terms of π.
5. $y=2 x^{2}, x=0, y=2$
6. $y=3-\frac{1}{6} x, x=0, y=0$

$u_{\square 乙 \varepsilon}=\kappa p_{z}\left(\kappa_{9}-8 I\right) u_{\varepsilon}^{0} \int \cdot 9$	$u=\kappa p\left(\frac{\tau}{\kappa}\right) u_{z}^{0} \int \varsigma$	SSL'9I $=x p\left({ }_{z} x-\nabla\right) u^{0} \int^{0}{ }^{\prime} \dagger$
£ZS'L86 $=x p_{9} x \chi 4{ }_{\varepsilon}^{0} \int \cdot \mathcal{L}$	$u \frac{\varepsilon}{\square 9}=x p_{z}(x-\downarrow) u_{t}^{0} \int \tau$	$u \frac{\mathrm{~s}}{8 z \mathrm{~L}}=x p\left({ }_{\star} x_{\downarrow}\right) u^{0}{ }_{z}^{0} \int^{\prime} \cdot \mathrm{I}$

