- 1. For $x = t^2 2t$ and y = t + 1, eliminate the parameter and write the corresponding rectangular equation.
- 2. If $x = 3 \sin 2t$ and $y = 4e^{2t}$ then $\frac{dy}{dx} =$
- 3. A curve is described by the parametric equations $x(t) = t^2 + 3$ and $y(t) = t^3 + t^2 + 1$. Find an equation of the line tangent to this curve at the point determined by t = 1.

4. A curve is defined by the parametric equations $x(t) = t^3 + 1$ and $y(t) = t^2 + 10t$. For what values of t is the line tangent to this curve horizontal?

5. What is the slope of the tangent line to the curve defined parametrically by $x(t) = \sqrt{t}$ and $y(t) = \frac{1}{4}(t^2 - 4)$, $t \ge 0$ at the point (2,3)?

5. B	₹-=1.4	$\nabla - x\frac{5}{2} = \chi \mathcal{E}$	$\Sigma \cdot \frac{3\cos 2t}{4e^{2t}}$	$1. x = y^2 - 4y + 3$	
Answers to 9.1 GA #1					