1. For $x=t^{2}-2 t$ and $y=t+1$, eliminate the parameter and write the corresponding rectangular equation.
2. If $x=3 \sin 2 t$ and $y=4 e^{2 t}$ then $\frac{d y}{d x}=$
3. A curve is described by the parametric equations $x(t)=t^{2}+3$ and $y(t)=t^{3}+t^{2}+1$. Find an equation of the line tangent to this curve at the point determined by $t=1$.
4. A curve is defined by the parametric equations $x(t)=t^{3}+1$ and $y(t)=t^{2}+10 t$. For what values of t is the line tangent to this curve horizontal?
5. What is the slope of the tangent line to the curve defined parametrically by $x(t)=\sqrt{t}$ and $y(t)=\frac{1}{4}\left(t^{2}-4\right)$, $t \geq 0$ at the point $(2,3)$?

$8{ }^{\circ} \mathrm{S}$	$\mathrm{S}-=7 \quad \dagger$	$L-x \frac{z}{s}=\kappa \cdot \varepsilon$	$\frac{72 \operatorname{sos} \varepsilon}{7 z^{\partial \tau}} \cdot \tau$	$\varepsilon+K_{\square}-{ }_{z} K=x \cdot \mathrm{I}$

