1. For $x = \ln t$ and $y = 2t^2$, eliminate the parameter and write the corresponding rectangular equation.

2. If $x = 4 \sin 2t$ and $y = 6 \cos 2t$ then $\frac{dy}{dx} =$

3. A curve is described by the parametric equations $x(t) = \tan t$ and $y(t) = \sin^2 2t$. Find an equation of the line tangent to this curve at the point determined by $t = \frac{\pi}{3}$.

4. A curve is defined by the parametric equations $x(t) = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t + 1$ and $y(t) = t^2 + 10t$. For what values of t is the line tangent to this curve vertical?

5. What is the slope of the tangent line to the curve defined parametrically by $x(t) = t^2 - 6$ and $y(t) = \frac{1}{t}$, $t \ge 0$ at the point (-5,1)?

	$z^{-} - \frac{z}{\tau}$	4. $t = 3$ and $t = 2$	$3. y = -\frac{\sqrt{3}}{4}x + \frac{3}{2}x + \frac{3}{2}x$	$\Sigma. \frac{dy}{dy} = -\frac{2}{2} \tan 2t$	1. $y = 2e^{2x}$
Answers to 9.1 CA #2					