We have been looking at graphs of one equation with two variables, typically x and y. Now we are looking at three variables that will represent a curve in the plane.

In the rectangular equation we are able to determine where the object is located at a point (x, y), but with the addition of the third variable (often t), we are able to determine when the object was at a point (x, y). NOTE: the third variable t is often time, but not always.

Parametric Equations

If f and g are continuous functions of t on an interval I, then the equations $x=f(t)$ and $y=g(t)$ are parametric equations and t is the parameter. You can sketch the curve of a parametric by substituting in values for t.

1. Sketch the curve with the following parametrization: $x(t)=2 t$ and $y(t)=t^{2}-1$, with $-1 \leq t \leq 2$.

\boldsymbol{t} -1 $-\frac{1}{2}$ 0 $\frac{1}{2}$ 1 $\frac{3}{2}$ 2 \boldsymbol{x} \boldsymbol{y}	

To find the rectangular equation when you are given the parametric equations, eliminate the parameter t through substitution.
2. Given $x(t)=2 t, y(t)=t^{2}-1$. Find the rectangular equation by eliminating the parameter.
3. Given the parametric equations $x(t)=2 \cos t$ and $y(t)=2 \sin t$. Eliminate the parameter.

Derivative of a Parametric Equation

The derivative of a parametric given by $x=f(t)$ and $y=g(t)$ is found by the following:
4. Given $x(t)=t^{\frac{1}{2}}$ and $y(t)=\frac{1}{4}\left(t^{2}-4\right)$ for $t \geq 0$. Find $\frac{d y}{d x}$
5. Given $x(t)=e^{2 t}$ and $y(t)=\cos t$ for $t \geq-1$. Find the equation of a tangent line when $t=\frac{\pi}{2}$.

9.1 Parametric Equations

Practice

1. For the given parametric equations, eliminate the parameter and write the corresponding rectangular equation. $x=e^{-t}$ and $y=e^{2 t}-1$.
2. Let C be a curve described by the parametrization $x=5 t$ and $y=t^{4}+3$. Find an expression for the slope of the line tangent to C at any point (x, y).
3. The position of a particle at any time $t \geq 0$ is given by $x(t)=3 t^{2}+1$ and $y(t)=\frac{2}{3} t^{3}$. Find $\frac{d y}{d x}$ as a function of x.
4. A particle moves along the curve $x y+y=9$. If $x=2$ and $\frac{d y}{d t}=3$, what is the value of $\frac{d x}{d t}$?
5. A curve is described by the parametric equations $x=t \cos t$ and $y=t \sin t$. Find the equation of the line tangent to the curve at the point determined by $t=\pi$.
6. Calculator active. The coordinates $(x(t), y(t))$ of the position of a drone change at rates given by $x^{\prime}(t)=2 t^{3}$ and $y^{\prime}(t)=t^{\frac{1}{2}}$, where $x(t)$ and $y(t)$ are measured in meters and t is measured in seconds. At what time t, for $0 \leq t \leq 2$, does the slope of the line tangent to its path have a slope of 1.5 ?
7. A curve in the $x y$-plane is defined by the parametric equations $x(t)=\cos (3 t)$ and $y(t)=\sin (3 t)$ for $t \geq 0$. What is the value of $\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} ?$
8. A curve is defined by the parametric equations $x(t)=a t^{2}+b$ and $y(t)=c t-b$, where a, b, and c are nonzero constants. What is the slope of the line tangent to the curve at the point $(x(t), y(t))$ when $t=2$?
9. No Calculator. For $0 \leq t \leq 11$ the parametric equations $x=3 \sin t$ and $y=2 \cos t$ describe the elliptical path of an object. At the point where $t=11$, the object travels along a line tangent to the path at that point. What is the slope of that line?
10. A particle moves in the $x y$-plane so that its position for $t \geq 0$ is given by the parametric equations $x(t)=2 k t^{2}$ and $y(t)=3 t$, where k is a positive constant. When $t=2$ the line tangent to the particle's path has a slope of 4 . What is the value of k ?
11. Find the equation of the line tangent to the curve defined parametrically by the equations $x(t)=t^{3}+2 t$ and $y(t)=2 t^{4}+2 t^{2}$ when $t=1$.
12. For what values of t does the curve given by the parametric equations $x(t)=\frac{1}{4} t^{4}-\frac{9}{2} t^{2}$ and $y(t)=3 t^{3}+2 t$ have a vertical tangent?
13. Suppose a curve is given by the parametric equations $x=f(t)$ and $y=g(t)$, for all $t>1$ and $\frac{d y}{d t}=\frac{t^{2}+2}{t-1} * \frac{d x}{d t}$. What is the value of $\frac{d y}{d x}$ when $t=2$?

9.1 Parametric Equations

14. A curve is defined parametrically by $x(t)=t^{2}$ and $y(t)=t^{3}-3 t$. Find the points on the graph where the tangent line is horizontal or vertical.
15. Free Response. Consider the curve given by the parametric equations $y=t^{3}-12 t$ and $x=\frac{1}{2} t^{2}-t$.
a. Find $\frac{d y}{d x}$ in terms of t.
b. Write an equation for the line tangent to the curve at the point where $t=-1$.
c. Find the x and y coordinates for each critical point on the curve and identify each point as having a vertical or horizontal tangent.
16. A curve is given by the parametric equations $x(t)=5 t^{3}-5$ and $y(t)=t^{2}+7$. What is the equation of the tangent line to the curve when $t=1$?
A. $x=0$
B. $y=\frac{2}{15} x+8$
C. $y=\frac{2}{15} x+1$
D. $y=8$
E. $y=\frac{15}{2} x+7$
