Calculus

9.1 Parametric Equations

Notes

Write your questions and thoughts here!

We have been looking at graphs of one equation with two variables, typically x and y. Now we are looking at three variables that will represent a curve in the plane.

In the rectangular equation we are able to determine where the object is located at a point (x, y), but with the addition of the third variable (often t), we are able to determine **when** the object was at a point (x, y). NOTE: the third variable t is often time, but not always.

Parametric Equations

If f and g are continuous functions of t on an interval I, then the equations x = f(t) and y = g(t) are parametric equations and t is the parameter. You can sketch the curve of a parametric by substituting in values for t.

1. Sketch the curve with the following parametrization: x(t) = 2t and $y(t) = t^2 - 1$, with $-1 \le t \le 2$.

t	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
x							
у							

WINDOW Tmin=-1 Tmax=2 Tstep=0.2 Xmin=-3.5 Xmax=5 Xscl=1 Ymin=-2 Ymax=4.5 Yscl=1

To find the rectangular equation when you are given the parametric equations, eliminate the parameter t through substitution.

- 2. Given x(t) = 2t, $y(t) = t^2 1$. Find the rectangular equation by eliminating the parameter.
- 3. Given the parametric equations $x(t) = 2\cos t$ and $y(t) = 2\sin t$. Eliminate the parameter.

Derivative of a Parametric Equation

The derivative of a parametric given by x = f(t) and y = g(t) is found by the following:

- 4. Given $x(t) = t^{\frac{1}{2}}$ and $y(t) = \frac{1}{4}(t^2 4)$ for $t \ge 0$. Find $\frac{dy}{dx}$
- 5. Given $x(t) = e^{2t}$ and $y(t) = \cos t$ for $t \ge -1$. Find the equation of a tangent line when $t = \frac{\pi}{2}$.

9.1 Parametric Equations

Calculus

Practice

- 1. For the given parametric equations, eliminate the parameter and write the corresponding rectangular equation. $x = e^{-t}$ and $y = e^{2t} 1$.
- 2. Let C be a curve described by the parametrization x = 5t and $y = t^4 + 3$. Find an expression for the slope of the line tangent to C at any point (x, y).

- 3. The position of a particle at any time $t \ge 0$ is given by $x(t) = 3t^2 + 1$ and $y(t) = \frac{2}{3}t^3$. Find $\frac{dy}{dx}$ as a function of x.
- 4. A particle moves along the curve xy + y = 9. If x = 2 and $\frac{dy}{dt} = 3$, what is the value of $\frac{dx}{dt}$?

- 5. A curve is described by the parametric equations $x = t \cos t$ and $y = t \sin t$. Find the equation of the line tangent to the curve at the point determined by $t = \pi$.
- 6. Calculator active. The coordinates (x(t), y(t)) of the position of a drone change at rates given by $x'(t) = 2t^3$ and $y'(t) = t^{\frac{1}{2}}$, where x(t) and y(t) are measured in meters and t is measured in seconds. At what time t, for $0 \le t \le 2$, does the slope of the line tangent to its path have a slope of 1.5?

- 7. A curve in the *xy*-plane is defined by the parametric equations $x(t) = \cos(3t)$ and $y(t) = \sin(3t)$ for $t \ge 0$. What is the value of $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$?
- 8. A curve is defined by the parametric equations $x(t) = at^2 + b$ and y(t) = ct b, where a, b, and c are nonzero constants. What is the slope of the line tangent to the curve at the point (x(t), y(t)) when t = 2?

- 9. **No Calculator.** For $0 \le t \le 11$ the parametric equations $x = 3 \sin t$ and $y = 2 \cos t$ describe the elliptical path of an object. At the point where t = 11, the object travels along a line tangent to the path at that point. What is the slope of that line?
- 10. A particle moves in the xy-plane so that its position for $t \ge 0$ is given by the parametric equations $x(t) = 2kt^2$ and y(t) = 3t, where k is a positive constant. When t = 2 the line tangent to the particle's path has a slope of 4. What is the value of k?

- 11. Find the equation of the line tangent to the curve defined parametrically by the equations $x(t) = t^3 + 2t$ and $y(t) = 2t^4 + 2t^2$ when t = 1.

 12. For what values of t does the curve given by the parametric equations $x(t) = \frac{1}{4}t^4 \frac{9}{2}t^2$ and $y(t) = 3t^3 + 2t$ have a vertical tangent?

13. Suppose a curve is given by the parametric equations x = f(t) and y = g(t), for all t > 1 and $\frac{dy}{dt} = \frac{t^2 + 2}{t - 1} * \frac{dx}{dt}$. What is the value of $\frac{dy}{dx}$ when t = 2?

9.1 Parametric Equations

Test Prep

14. A curve is defined parametrically by $x(t) = t^2$ and $y(t) = t^3 - 3t$. Find the points on the graph where the tangent line is horizontal or vertical.

- 15. Free Response. Consider the curve given by the parametric equations $y = t^3 12t$ and $x = \frac{1}{2}t^2 t$.
 - a. Find $\frac{dy}{dx}$ in terms of t.

b. Write an equation for the line tangent to the curve at the point where t = -1.

c. Find the x and y coordinates for each critical point on the curve and identify each point as having a vertical or horizontal tangent.

16. A curve is given by the parametric equations $x(t) = 5t^3 - 5$ and $y(t) = t^2 + 7$. What is the equation of the tangent line to the curve when t = 1?

A.
$$x = 0$$

B.
$$y = \frac{2}{15}x + 8$$

C.
$$y = \frac{2}{15}x + 3$$

D.
$$y = 8$$

A.
$$x = 0$$
 B. $y = \frac{2}{15}x + 8$ C. $y = \frac{2}{15}x + 1$ D. $y = 8$ E. $y = \frac{15}{2}x + 7$