9.2 Second Derivatives of Parametric Equations

1. Given a curve defined by the parametric equations $x(t)=\sqrt{t}$ and $y(t)=2 t-1$. Determine the open t-intervals on which the curve is concave up or down.
2. If $x(t)=t^{2}-5$ and $y(t)=t^{-1}$, find the slope and the concavity at the point $(-4,1)$.
3. If $x(t)=6 t^{2}$ and $y(t)=t^{3}-t$, what is $\frac{d^{2} y}{d x^{2}}$ in terms of t ?
4. If $x=\sin \theta$ and $y=2 \cos \theta$, what is $\frac{d^{2} y}{d x^{2}}$ in terms of θ ?
5. If $\frac{d x}{d t}=4$ and $\frac{d y}{d t}=\sin (3 t)$, what is $\frac{d^{2} y}{d x^{2}}$ in terms of t ?

Answers to $9.2 \mathrm{CA} \# 1$

1. $\frac{d^{2} y}{d x^{2}}=4$, therefore the graph is concave up on its domain $t \geq 0$.	2. $\frac{d^{2} y}{d x^{2}}=\frac{3 t^{2}+1}{144 t^{3}}$	3. Slope: $-\frac{1}{2}$, Concave Up	4. $-2 \sec ^{3} \theta$	5. $\frac{3 \cos (3 t)}{16}$

