9.2 Second Derivatives of Parametric Equations

1. Given a curve defined by the parametric equations $x(t)=4 \cos t$ and $y(t)=2 \sin t$, for $0<t<2 \pi$. Determine the open t-intervals on which the curve is concave up or down.
2. If $x(t)=t^{-1}$ and $y(t)=t^{2}-7$, find the slope and the concavity at the point $(1,-6)$.
3. If $x(\theta)=\tan \theta$ and $y(\theta)=\sec \theta$, what is $\frac{d^{2} y}{d x^{2}}$ in terms of θ ?
4. If $\frac{d x}{d t}=4 t$ and $\frac{d y}{d t}=t \cos \left(t^{2}\right)$, what is $\frac{d^{2} y}{d x^{2}}$ in terms of t ?

Answers to $9.2 \mathrm{CA} \# 2$

| 1.
 Concave Up: $\pi<t<2 \pi$
 Concave Down: $0<t<\pi$ 2. $-\frac{(t+2)}{18 t^{5}}$ | 3.Slope: -2,
 Concave Up | 4. $\cos ^{3} \theta$ | 5. $-\frac{\sin \left(t^{2}\right)}{8}$ |
| :--- | :--- | :--- | :--- | :--- |

