Second Derivative of a Parametric Equation
The second derivative of a parametric given by $x=f(t)$ and $y=g(t)$ is

Given the following parametric equations, find $\frac{d^{2} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}^{2}}$ in terms of \boldsymbol{t}.

1. $x(t)=\sqrt{t}$ and $y(t)=\frac{1}{2}\left(t^{2}-2\right)$ for $t \geq 0 . ~ 2 . x=3 \cos t$ and $y=4 \sin t$.
2. At $t=1$, find the concavity of the graph defined parametrically by $x=t^{3}+1$ and $y=t^{4}+t$.

9.2 Second Derivatives of Parametric Equations

Given the following parametric equations, find $\frac{d^{2} y}{d x^{2}}$ in terms of \boldsymbol{t}.

1. $x(t)=e^{-2 t}$ and $y(t)=e^{2 t} . \quad$ 2. $x(t)=t^{3}$ and $y(t)=t^{4}+1$ for $t>0$.
2. $x(t)=a t^{3}$ and $y(t)=b t$, where a and b are positive constants.
3. $x=e^{t}$ and $y=t e^{-t}$.
4. $\frac{d x}{d t}=4$ and $\frac{d y}{d t}=\sin \left(t^{2}\right)$.
5. $x=t^{2}+1$ and $y=2 t^{3}$.
6. Given a curve defined by the parametric equations $x(t)=2-t^{2}$ and $y(t)=t^{2}+t^{3}$. Determine the open t-intervals on which the curve is concave up or down.
7. If $x(\theta)=2+\sec \theta$ and $y(\theta)=1+2 \tan \theta$, Find the slope and the concavity at $\theta=\frac{\pi}{6}$.
8. If $x=\cos \theta$ and $y=3 \sin \theta$, find the slope and concavity at $\theta=0$.
9. If $x(t)=t-\ln t$ and $y(t)=t+\ln t$, determine values of t where the graph is concave up.

9.2 Second Derivatives of Parametric Equations

11. If $x=3 t^{2}-1$ and $y=\ln t$, what is $\frac{d^{2} y}{d x^{2}}$ in terms of t ?
A. $\frac{1}{6} t^{2}$
B. $-\frac{1}{3} t^{-3}$
C. $-\frac{1}{18} t^{-4}$
D. $-\frac{1}{2} t^{-4}$
E. $6 t^{4}$
12. If $x=\theta-\cos \theta$ and $y=1-\sin \theta$, find the slope and concavity at $\theta=\pi$.
A. Slope: -1 , Concave down
B. Slope: π, Concave up
C. Slope: 1, Concave down
D. Slope: 1, Concave up
E. Slope: $\frac{1}{\pi}$, Concave up
