Calculus

Notes

Second Derivative of a Parametric Equation

The second derivative of a parametric given by x = f(t) and y = g(t) is

Given the following parametric equations, find $\frac{d^2y}{dx^2}$ in terms of *t*.

1. $x(t) = \sqrt{t}$ and $y(t) = \frac{1}{2}(t^2 - 2)$ for $t \ge 0$. 2. $x = 3\cos t$ and $y = 4\sin t$.

3. At t = 1, find the concavity of the graph defined parametrically by $x = t^3 + 1$ and $y = t^4 + t$.

9.2 Second Derivatives of Parametric Equations Calculus

Calculus Given the following parametric equations, find $\frac{d^2y}{dx^2}$ in terms of <i>t</i> .				
2. $x(t) = t^3$ and $y(t) = t^4 + 1$ for $t > 0$.				
4. $\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = \sin(t^2)$.				
6. $x = t^2 + 1$ and $y = 2t^3$.				

7.	Given a curve defined by the parametric equations $x(t) = 2 - t^2$ and $y(t) = t^2 + t^3$. Determine the open <i>t</i> -intervals on which the curve is concave up or down.		If $x(\theta) = 2 + \sec \theta$ and $y(\theta) = 1 + 2 \tan \theta$, Find the slope and the concavity at $\theta = \frac{\pi}{6}$.
9.	If $x = \cos \theta$ and $y = 3 \sin \theta$, find the slope and concavity at $\theta = 0$.	10.	If $x(t) = t - \ln t$ and $y(t) = t + \ln t$, determine values of t where the graph is concave up.

9.2 Second Derivatives of Parametric Equations

11. If $x = 3t^2 - 1$ and $y = \ln t$, what is $\frac{d^2y}{dx^2}$ in terms of t?

A.
$$\frac{1}{6}t^2$$
 B. $-\frac{1}{3}t^{-3}$ C. $-\frac{1}{18}t^{-4}$ D. $-\frac{1}{2}t^{-4}$ E. $6t^4$

12. If $x = \theta - \cos \theta$ and $y = 1 - \sin \theta$, find the slope and concavity at $\theta = \pi$.

A. Slope: -1, Concave down B. Slope: π , Concave up C. Slope: 1, Concave down

D. Slope: 1, Concave up E. Slope: $\frac{1}{\pi}$, Concave up