9.3 Arc Length (Parametric Form)

What is the length of the curve defined by the parametric equations? Solve without the use of a calculator.

1. $x(t)=7 t+1$ and $y(t)=3-6 t$ for the interval $-1 \leq t \leq 3$.
2. $x(t)=4 a t^{2}$ and $y(t)=4 b t^{2}$, where a and b are constants. What is the length of the curve from $t=0$ to $t=1$?
3. $x(t)=9 \cos \theta$ and $y(t)=9 \sin \theta$ for the interval $0 \leq \theta \leq \frac{\pi}{2}$.
4. $x(\theta)=\cos \theta+\theta \sin \theta$ and $y(\theta)=\sin \theta-\theta \cos \theta$ on the interval $0 \leq \theta \leq \pi$.
5. Which of the following gives the length of the path described by the parametric equations $x=e^{2 t}$ and $y=1-2 t$ from $0 \leq t \leq 3$?
A. $\int_{0}^{3} \sqrt{4 e^{2 t}+4} d t$
B. $\int_{0}^{3} \sqrt{2 e^{2 t}+2} d t$
C. $\int_{0}^{3} \sqrt{4 e^{4 t}+4} d t$
D. $\int_{0}^{3} \sqrt{e^{4 t}+4} d t$

$J^{\circ} \mathrm{S}$	$\frac{z}{z^{4}} \cdot t$	$\frac{z}{u_{6}} \cdot \varepsilon$	${ }_{2} q+{ }_{2}{ }^{p} \wedge \nabla^{\prime} \tau$	S8 ${ }^{\prime \prime}{ }^{\circ} \mathrm{I}$

