9.3 Arc Length (Parametric Form)

Calculus Name:

CA #1

What is the length of the curve defined by the parametric equations? Solve without the use of a calculator.

- 1. x(t) = 7t + 1 and y(t) = 3 6t for the interval $-1 \le t \le 3$.
- 2. $x(t) = 4at^2$ and $y(t) = 4bt^2$, where a and b are constants. What is the length of the curve from t = 0 to t = 1?

- 3. $x(t) = 9\cos\theta$ and $y(t) = 9\sin\theta$ for the interval $0 \le \theta \le \frac{\pi}{2}$.
- 4. $x(\theta) = \cos \theta + \theta \sin \theta$ and $y(\theta) = \sin \theta \theta \cos \theta$ on the interval $0 \le \theta \le \pi$.

5. Which of the following gives the length of the path described by the parametric equations $x = e^{2t}$ and y = 1 - 2t from $0 \le t \le 3$?

A.
$$\int_0^3 \sqrt{4e^{2t} + 4} \, dt$$

B.
$$\int_0^3 \sqrt{2e^{2t} + 2} \, dt$$

C.
$$\int_0^3 \sqrt{4e^{4t} + 4} \, dt$$

D.
$$\int_0^3 \sqrt{e^{4t} + 4} \, dt$$