9.3 Arc Length (Parametric Form)

What is the length of the curve defined by the parametric equations? Solve without the use of a calculator.

1. $x(t)=5 t+3$ and $y(t)=2-7 t$ for the interval $0 \leq t \leq 4$.
2. $x(t)=\frac{a}{3} t^{2}$ and $y(t)=\frac{b}{3} t^{2}$, where a and b are constants. What is the length of the curve from $t=0$ to $t=1$?
3. $x(\theta)=6 \cos \theta$ and $y(\theta)=6 \sin \theta$ for the interval $0 \leq \theta \leq \frac{3 \pi}{2}$.
4. $x(t)=2 \cos 3 t$ and $y(t)=2 \sin 3 t$ on the interval $0 \leq t \leq 2 \pi$.
5. Which of the following gives the length of the path described by the parametric equations $x=\ln t$ and $y=1+$ $3 t$ from $1 \leq t \leq 3$?
A. $\int_{1}^{3} \sqrt{\frac{1+9 t^{2}}{t}} d t$
B. $\int_{1}^{3} \sqrt{\frac{1+3 t^{2}}{t^{2}}} d t$
C. $\int_{1}^{3} \sqrt{\frac{1+9 t^{2}}{t^{2}}} d t$
D. $\int_{1}^{3} \sqrt{(\ln t)^{2}+(1+3 t)^{2}} d t$

$\bigcirc \bigcirc$	\# L 't	$\Perp_{6} \quad \varepsilon$	${ }_{2} q+{ }_{2} p \sim \frac{\varepsilon}{\tau} \cdot \tau$	ฤL八も ${ }^{\text {¢ }}$

