Write your questions and thoughts here!

Recall: Arc Length

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Arc Length in Parametric Form

For each set of parametric equations, find the length of the curve on the given interval.

1. $x(t)=\cos t$ and $y(t)=\sin t$ on the interval $0 \leq t \leq 2 \pi$.
2. $x=1-4 t$ and $y=7 t$ on the interval
$0 \leq t \leq 2$.

9.3 Arc Length (Parametric Form)

Practice

Calculus

What is the length of the curve defined by the parametric equations? Solve without the use of a calculator.

1. $x(t)=6 t+10$ and $y(t)=14-4 t$ for the interval $-1 \leq t \leq 3$?
2. $x=\frac{a}{2} t^{2}$ and $y=\frac{b}{2} t^{2}$, where a and b are constants. What is the length of the curve from $t=0$ to $t=1$?
3. $x(\theta)=5 \cos \theta$ and $y(\theta)=5 \sin \theta$ for the interval $0 \leq \theta \leq 2 \pi$.
4. $x(t)=7 t-2$ and $y(t)=4-8 t$ for the interval $1 \leq t \leq 5$.
5. If a curved is described by the parametric equations $x=t^{2}$ and $y=2 e^{2 t}$, then which of the following gives the length of the path from $t=0$ to $t=\ln 3$?
A. $\int_{0}^{\ln 3} \sqrt{4 t^{2}+4 e^{4 t}} d t$
B. $\int_{0}^{\ln 3} \sqrt{t^{4}+4 e^{4 t}} d t$
C. $\int_{0}^{\ln 3} \sqrt{4 t^{2}+16 e^{4 t}} d t$
D. $\int_{0}^{\ln 3} \sqrt{t^{2}+2 e^{2 t}} d t$
6. Which of the following gives the length of the path described by the parametric equations $x=2+4 t$ and $y=3+t^{2}$ from $t=0$ to $t=1$?
A. $\int_{0}^{1} \sqrt{4+2 t} d t$
B. $\int_{0}^{1} \sqrt{(2+4 t)^{2}+\left(3+t^{2}\right)^{2}} d t$
C. $\int_{0}^{1} \sqrt{16 t^{2}+t^{4}} d t$
D. $\int_{0}^{1} \sqrt{16+4 t^{2}} d t$
7. Which of the following gives the length of the path described by the parametric equations $x=\cos t^{3}$ and $y=e^{5 t}$ from $t=0$ to $t=\pi$?
A. $\int_{0}^{\pi} \sqrt{9 t^{4} \sin ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
B. $\int_{0}^{\pi} \sqrt{-3 t^{2} \sin \left(t^{3}\right)+5 e^{5 t}} d t$
C. $\int_{0}^{\pi} \sqrt{9 t^{4} \sin ^{2}\left(t^{3}\right)+25 e^{5 t}} d$
D. $\int_{0}^{\pi} \sqrt{\left(\cos \left(t^{3}\right)\right)^{2}+\left(e^{5 t}\right)^{2}} d t$
8. Which of the following gives the length of the path described by the parametric equations $x=\sin 3 t$ and $y=\cos 2 t$ from $t=0$ to $t=\pi$?
A. $\int_{0}^{\pi} \sqrt{\sin ^{2} 3 t+\cos ^{2} 2 t} d t$
B. $\int_{0}^{\pi} \sqrt{\cos ^{2} 3 t+\sin ^{2} 2 t} d t$
C. $\int_{0}^{\pi} \sqrt{9 \cos 3 t+4 \sin 2 t} d t$
D. $\int_{0}^{\pi} \sqrt{9 \cos ^{2} 3 t+4 \sin ^{2} 2 t} d t$
9. Which of the following gives the length of the path described by the parametric equations $x=\sqrt{t}$ and $y=3 t-1$ from $0 \leq t \leq 1$?
A. $\int_{0}^{1} \sqrt{\frac{t}{4}+9} d t$
B. $\int_{0}^{1} \sqrt{\frac{1}{4} t^{-1}+9} d t$
C. $\int_{0}^{1} \sqrt{\frac{1}{4} t+3} d t$
D. $\int_{0}^{1} \sqrt{\frac{1}{2} t^{-\frac{1}{2}}+3} d t$

No test prep. Problems 6-10 are great examples of problems you may see on the AP Exam.

