4 Derivatives of Vector-Valued Function Inculus	Name: CA #1
 If f is a vector-valued function defined by f(t) = ⟨t sin t, t cos t⟩, then f''(t) = 	2. At time $t, 0 \le t \le 2\pi$, the position of a particle moving along a path in the xy-plane is given by the vector-valued function, $f(t) = \langle e^{2t} \cos t \rangle$, $e^{2t} \sin t \rangle$. Find the slope of the path of the particle at time $t = \frac{\pi}{2}$.
3. The position of a particle moving in the <i>xy</i> -plane defined by the vector-valued function, f(t) = ⟨t ³ - 9t ² + 1, 2t ³ - 15t ² - 36t + 1⟩. For what value of t is the particle at rest?	$(2e^{2t}, te^{2t})$. Find $f'(1)$.

5. If *h* is by $h(t) = (\sin \frac{1}{2}, \cos 3t)$, then h'(t)

	$\langle \mathfrak{z} \operatorname{r} \operatorname{r} \mathfrak{s} \operatorname{r} \mathfrak{s} \mathfrak{s}, -\mathfrak{z} \operatorname{sin} \mathfrak{z} \mathfrak{s} \rangle$	4. (4e ² , 3e ²)	3 = t .5	z2	1. $(2\cos t - t\sin t, -2\sin t - t\cos t)$		
Answers to 9.4 CA #1							